Ch 13 vector-Valued Functions And Motion In Space
The functions we worked with, so far, a re called real-valued functions $(y=f(x))$. In them, the domain (input) " x " is a real number as will as the range (output) " y ".

In this chapter we will study vector-Valued functions.

$$
r(t)=\langle f(t), g(t), h(t)\rangle \quad \text { (i nspace) }
$$

In them, the domain " t "' is a real number, but the range (output) (value of the function) " r " is a vector.
we will use Vector-Valued fans to descripe the paths and motions of objects in space or Plane and s tad their properties (velcity, Acceleratio, twin and twist)
13.1 Curves in Space and Their Tangents

A curve in space can be thought of as the path of a particle whose coordinates (x, y, z) are funstion of time " t " $x=f(t), y=g(t), z=h(t)$ $t \in I_{\text {nerval }}$
These eqns parametrize the curve (they represent the curve)

Another representation of the curve is the Vector form

$$
\begin{aligned}
\overrightarrow{O P}=\gamma(t) & =\langle f(t), g(t), h(t)\rangle \\
& =f(t) i+g(t) j+h(t) k
\end{aligned}
$$

Note $\gamma(t)$ is a Vector-valued fun
$f(t), g(t), h(t)$ are real-Valued fums
(scalar functions)
Ex the value of $r(t)=3 t i+\left(t^{2}-t\right) j-3 k$ at $t=2$ is

$$
r(2)=6 i+2 j-3 k=\langle 6,2,-3\rangle
$$

at different t's, the vector points to different points. making no the curve.
Examples of curves in space. use maple to graph

$$
\begin{aligned}
& r(t)=(\sin 3 t \cos t) i+(\sin 3 t \sin t) j+t K \\
& r(t)=(\cos t) i+(\sin t) j+(\sin 2 t) K_{n} \\
& r(t)=(4+\sin 20 t)(\cos t) i+(4+\sin 2 t)(\sin t) j+(\cos 20 t) K
\end{aligned}
$$

with (VectorCalculus)
SpaceCurve $(<f(t), g(t), h(t)>, t=a \ldots b) \quad$ (Note: this is don by Pvaliatingmany points and competing them)
With out soft wares, we need previous Knowllege
Ex describe the curve defined bytle vector function $r(t)=\langle 1+t, 2+5 t,-1+6 t\rangle$. The corresponding parametric eq ns $x=1+t \quad y=2 t s t \quad z=-1+6 t$, from 12.s, are for the Lime through $8(1,2,-1)$ parallel to $v=\langle 1,5,6\rangle$

Ex 1 page 708 Graph the Vector fun

$$
r(t)=(\cos t) i+(\sin t) j+t k
$$

write the parametric eqns and chose two for a recognized surface, the curve will be on the surface. Vary the third ign to follow the curbs.
$x=\cos t \quad y=\sin t \quad z=t \quad$ weknom $\cos ^{2}+\sin ^{2}=1$

$$
\Rightarrow x^{2}+y^{2}=1 \quad \text { in space }
$$

\sum helix (spiral)

$$
\begin{array}{ll}
t=0 & r(0)=\langle 1,0,0\rangle \\
t=\frac{\pi}{2} & r\left(\frac{\pi}{2}\right)=\left\langle 0,1, \frac{\pi}{2}\right\rangle \\
t=\pi & r(\pi)=\langle-1,0, \pi\rangle
\end{array}
$$

this is a cylinder
?
What if $z=t^{2}$? the curve goose up not linearly 8 (Not a helix) $?$ How a bout $r(t)=\langle\sin t$, cost, $t\rangle$ spiral clock wize

How a bout $r(t)=t i+\sin t j+\cos t k$ helix along $x-a x i s$
Limits and Continuity
Limits of vector-valued fans are defined similarly as real-valued fins.
from the definition, if $\gamma(t)=f(t) i+g(t) j+h(t) k$ then $\operatorname{Lim}_{t \rightarrow t_{0}} r(t)=\left(\operatorname{Lim}_{t \rightarrow t_{0}} f(t)\right) i+\left(\operatorname{Lim}_{t \rightarrow t_{0}} g(t)\right) j+\left(\operatorname{Lim}_{\rightarrow \rightarrow t_{0}} h(t)\right) K$ if all the components limits exist
Ex 2 page 709
If $\gamma(t)=\cos t i+\sin t j+t k$
$\operatorname{Lim} r(t)=\frac{1}{\sqrt{2}} i+\frac{1}{\sqrt{2}} j+\frac{\pi}{4} k$ we take Limit component $t \rightarrow \frac{\pi}{4}$ component
Continuity (similar tor real-valued fun)
$r(t)$ is continuous at $t=t_{0}$ if
$\operatorname{Dr}\left(t_{0}\right)$ defined 2) $\operatorname{Lim}_{t \rightarrow t_{0}} r(t)$ exist 3) $\underbrace{r\left(t_{0}\right)=\lim _{t \rightarrow t_{0}} r(t)}_{\text {inclunte } 1 \text { land 2) }}$
Note from def of $\lim _{t \rightarrow+\infty} \gamma(t), \gamma(t)$ is cont iffy each component scalar fun is continuous.
Ex 3 Page 709
a) continuous because the component's fun are one
b) $\gamma(t)=\cos t i+\sin t j+L t J K$ is continuous for $t \neq$ integer

Derivative and Motion

$$
\begin{aligned}
\Delta r & =r(t+\Delta t)-r(t) \text { and tim } t+\Delta t \text { is } \\
& =f(t \Delta t) i+g(t+\Delta t) j+h(t+\Delta t) k-f(t) i-g(t) j-h(t) k \\
& =(f(t+\Delta t)-f(t)) i+(g(t+\Delta t)-g(t)) j+h(t \Delta t)
\end{aligned}
$$

As $\Delta t \rightarrow 0$ 1) Q approach p along the curve
2) the secant line $P Q$ becomes tangent to the curve at p
3) $\frac{\Delta r}{\Delta t}$ Appranches the limit

$$
\begin{aligned}
& \operatorname{Lim}_{\Delta t \rightarrow 0} \frac{\Delta r}{\Delta t}=\lim _{\Delta t \rightarrow 0} \frac{f(t \Delta t)-f(t)}{\Delta t} i+\lim _{\Delta t \rightarrow 0} \frac{g(t+\Delta t)-g(t)}{\Delta}+\lim _{\Delta \rightarrow 0}^{\prime} \frac{h(t \Delta t h(t)) k}{\Delta t} \\
&=f^{\prime}(t) i+g^{\prime}(t) j+h^{\prime}(t) K \text { this is th def of the } \\
& \text { derivative of } V=r(t)
\end{aligned}
$$

Definition:
If $r(t)=f(t) i+g(t) j+h(t) k$ then the derivative of $r(t)$ is $\left.\frac{d r}{d t}=r^{\prime}(t)=\frac{f^{\prime}(t) i}{\text { provide }}+\frac{g^{\prime}(t)}{1 \text { dtinéd }}\right)+h^{\prime}(t) k$

- If γ^{\prime} is continuous and never $0=\langle 0,0,0\rangle$ th γ is $S r_{0}$
$-\gamma^{\prime}(t)$ at β is the ${ }^{\text {Ko for }}$, to the carne at ρ

- the ${ }^{n} x$ to the cure at p is the line through p
a $_{2 \text { en y }}$ in the direction of the vector tangent.
 wi y pieced together in a continuo faction

Exercise 19 page 714
If $r(t)=\sin t i+\left(t^{2}-\cos t\right) j+e^{t} k$ then f ind

1) $\gamma^{\prime}(t)$ 2) the tangent vector to the curve at $t_{0}=0$
2) The tangent line to the curve at to $=0$
3) $r^{\prime}(t)=\cos t i^{\prime}+(2 t+\sin t) j+e^{t} k$
4) $r^{\prime}(0)=i+k$
5) point is $\left(\sin (0),(0)^{2}-\cos (0), e^{0}\right)=(0,-1,1)$ direction Vector is $\langle 1,0,1\rangle$ $v=\left\langle v_{1}, v_{2}, v_{3}\right\rangle$ art $x=x_{0}+v_{1} t$
$y=y_{1}$ $y=y_{0}+v_{1} t$ \therefore ens $x=0+1 t \quad y=-1+0 t \quad z=1+1 t \quad \quad z=z_{t}+v_{3} t$
graph thcurne and th l line $r(t)=\langle t,-1, \mid+t\rangle$ the cope and paste one on see if you can graph vectors the other in maple.

Derivative and Motion
Defs:
If $r(t)$ is the posision vector of a particle moving a long a smooth curve in space 'includ er plane' then
$V(t)=r^{\prime}(t)$ is the particles Velocity \{ quantity with $|N|=$ speed $\frac{V}{|V|}=$ direction of motion $a=V^{\prime}=r^{\prime \prime}(t)$ is the acceleration

Ex 4 page $711 \quad r(t)=2$ cost $i+\sin t j+5 \cos ^{2} t k$
Differentiation Rules page 712. go over them and Note $\frac{f(x)}{g(x)}=\frac{\text { red }}{\text { red }}$ is defined. for veto rs No qoutient Rule $f(x) * g(x)=$ real real is defined. for vectors wan $v_{1} \cdot v_{2}$ or $v_{1} x v_{2}$
vector functions of constant length (speed $)(|v|=c)$ if $r(t)$ is on a sphere at the origion then

$$
|v|=c \Rightarrow|r(t)|=c \Rightarrow r(t) \cdot r(t)=c^{2}
$$

(r.r=|r $)^{4}$)

$$
\begin{aligned}
& \Rightarrow \frac{d}{d t}(r(t) \cdot r(t))=0 \Rightarrow r^{\prime}(t) \cdot r(t)+r(t) \cdot r^{\prime}(t)=0 \\
& \Rightarrow 2 r^{\prime}(t) \cdot r(t)=0 \Rightarrow r^{\prime}(t) \cdot r(t)=0 \Rightarrow r^{\prime}(t)+r^{\prime}(t)
\end{aligned}
$$

13.2 Integrals of vector functions; projectile Motion

Application
If $R^{\prime}(t)=Y(t)$ then R is an antiderivative of r adding \vec{C} to R and differentiate $\frac{d}{d t}(R+C)=r(t)$
\therefore The indefinit integral of r is $\int r(t) d t=R(t)+\vec{c} \quad \vec{c}=\langle c$, sis 0

$$
\int f(t) c+g(t) j+h(t) k d t=\left(\int f(t) d t\right) i+\left(\int g(t d t t) j+\int h(t) d t\right) k
$$

Ex 1 page $716 \int(\cos t i+j-2 t k) d t$

$$
\begin{aligned}
& =\int \operatorname{costdt} i+\int 1 d t j+\int-2 t d t k \\
& =\sin t i+t j+-t^{2} k+C \quad c=c_{i} i+c_{j}+c_{j} k
\end{aligned}
$$

So, to integrate a vector fun, integrate all components.
Similarly for definite integral.

$$
\begin{aligned}
& \text { Ex 2 page } 716 \int_{0}^{\pi}(\cos t i+j-2 t k) d t \\
& =\left.\sin t\right|_{0} ^{\pi} i+\left.t\right|_{0} ^{\pi} j+-\left.t^{2}\right|_{0} ^{\pi} k=\pi j-\pi^{2} k
\end{aligned}
$$

Ex 3 Page 716
a glider acceleration vector is $a(t)=-3 \cos t i-3 \operatorname{sint} j+2 k$ initially $(t=0)$ possision is $(3,0,0) \quad(r(0)=\langle 3,0,0\rangle)$, and
Velocity is $3 j(V(0)=\langle 0,3,0\rangle)$
find the gliders possision function $r(t)=$??
Find $v(t)=\int a(t) d t$ then find $r(t)=\int v(t) d t$

$$
\gamma(t)=3 \cos t i+3 \sin t j+t^{2} k<? \text { is it }
$$

Another of vector fum \int 's is the derivation of Projectile motion undue ideal connsthis we will skip. We will see more A er in the net section it ing
13.3 Arc Length in space

In a plane the length of the curve defined by $x=f(t), y=g(t)$ from $t=a$ to $t=b$ is $L=\int \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t$

In space when $r(t)=x(t) i+y(t) j+z(t) K$

$$
\sqrt{2} L=\int_{t=a}^{t=0} \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}+\left(\frac{d z}{d t}\right)^{2}} d t
$$

but $\frac{d x}{d t} i+\frac{d y}{d t} j+\frac{d z}{d t} k=V(t)$ velocity

$$
|V(t)|=\sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}+\left(\frac{d t}{(t)}\right)^{2}} \therefore L=\int_{t=a}^{t=b}|V(t)| d t
$$

we Know $|V(t)|=$ speed and if speed is constant distance $=$ speed $*$ time is $L=\int|v(t)|$ consistent with thin.

$$
=\int_{t_{1}}^{t_{2}}|v|^{\text {constant }}|t=|v| t|_{t_{1}}^{t_{2}}=|v| t_{2}-|v| t_{1}=|v|\left(t_{2} t_{1}\right)
$$

Ex 1 page $724 \quad r(t)=\cos t i+\sin j j+t k \quad$ gliders gath, $h_{1} /$ ix find th length of the glider's p th from whist

$$
L=\int_{0}^{2 \pi}|v| d t=\int_{0}^{2 \pi} \sqrt{(\sin t)^{2}+(\cos t)^{2}+1^{2}} d t=2 \pi \sqrt{t} \text { units of length. }
$$

Suppose we want the Length from a fixed point $p(t 0)$ called the base point to
$t=3 . L=\int_{t 0}^{3}|V(t)| d t \quad, t=7 \quad L=\int^{7}|V(t)| d t$ $t=t$ in general $L=\int_{t 0}^{t}|V(\tau)| d \tau$ which is a function of t this function is called the aracelength parameter with base point $p\left(t_{0}\right)$ and it is denoted by $S(t)$ Why it is a cone parameter?
If $S=f(t)$ wa may be able to solve for t in terms of S $t=t(s)$ and by replacing t with $t(s)$ in $r=r(t)$ We get the curve function in terms of S $\gamma=\gamma(t(s))$. So tell me the directed distance, along the the point on the carne with that distance
$\binom{s>0$ point is in the direction of motion }{$s<0====$ oppisate direction $)}$

Not all cures are easy to farmintrize as Exp. Fortunately We rarely need an exact formula for $S(t)$ or its invers $t(s)$. However we. need the concept for deriving computational formulas.

Ex 2 Page 725 Parametrize the carne $r(t)=$ costitsintjt th with the arc length parameter using the base point $8\left(t_{0}=0\right)$

$$
\begin{aligned}
& s(t)=\int_{0}^{t}|v(\tau) d \tau \quad v=-\sin t i+\cos t j+1 \Rightarrow| v \mid=\sqrt{2} \\
& =\int_{0}^{t} \sqrt{2} d \tau=\sqrt{2} t \quad \text { So the are length parameter is } \\
& \quad S=\sqrt{2} t
\end{aligned}
$$

Now solve for $t \Rightarrow t=\frac{s}{\sqrt{2}}$ substitute $t=\frac{s}{\sqrt{2}}$ in $r(t)$
$\Rightarrow r(s)=\cos \frac{s}{\sqrt{2}} i+\sin \frac{s}{\sqrt{2}} j+\frac{s}{\sqrt{2}} k$ which is the parametrisation of the curve $r(t)$ with the are length \underline{s} $r(s)$ Identifies a point on the cur ne with its directed distance from the brace point $p\left(t_{0}\right)=(1,0,0)$.
Note: the arc length parameter S is an increasing function of t.

$$
S(t)=\int_{t_{0}}^{t}|V(\tau)| d \tau
$$

by the $F T C \frac{d s}{d t}=|V(t)|$ "Note again that this is consitiant with what
We how is
$\Rightarrow \frac{d s}{d t}>0$ since speed is nonnegative $\frac{20}{i j}=$ is
$\therefore S$ is increasing function of t

Unit Tangent Vector
If $r=r(t)$ then $V=\frac{d r}{d t}$ is the tangent Vector to the curve $r(t)$ ans thus
$J=\frac{V}{\mid V L}$ is a unit Tangent vector
This is one of three unit vectors in a refference frame that describs the motion of an object traneling in 3D
Ex 3 find the unit Tangent vector of the curve

$$
\begin{aligned}
& r(t)=3 \cos t i+3 \sin t j+t^{2} k \\
& V(t)=(-3 \sin t) i+3 \cos t j+2 t k \\
& T=\frac{V}{|V|}=\frac{-3 \sin t}{\sqrt{9+4 t^{2}}} i+\frac{3 \cos t}{\sqrt{9+4 t^{2}}} j+\frac{2 t}{\sqrt{9+4 t^{2}}} k
\end{aligned}
$$

Ex $r(t)=\cos t i+\sin t j$ 2D circle

$$
V=-\sin t i+\cos t j \quad T=\frac{V}{|v|}=\frac{-\sin t}{1} i+\frac{\cos t j}{1}=r
$$

Now show that $\frac{d r}{d s}=T$ page 727 for $\gamma(t), \frac{d r}{d t}=V$ is the chang in the position vector γ with respect to t, but how a bout $\frac{d r}{d s}\left(\begin{array}{l}\text { her does th position } \\ \text { refer change with } \\ \text { re pert }\end{array}\right.$ since S is increasing, it has an immerse $t=t(s)$ ret to the arc lapel) and $\frac{d t}{d s}=\frac{1}{\frac{d s}{d t}}$ section $7.1=\frac{1}{\mid \mathrm{V\mid}}$
by the chain Rule $\frac{d r}{d s}=\frac{d r}{d t} \frac{d t}{d s}=v \frac{1}{|v|}=T$
So the Unit Tangent Vector the rate of change in the position Vector with respect to the are length.

Note. if carne is Not smooth $\left(\frac{d r}{d t}=V=\langle 0,0,0\rangle\right)$ then T is N_{0} affined
13. 4 curvature and Normal Vector of a Curve

In this section, we will stadny how a curve turns or bends

Curvature of a plane curve

The Magnitude of T is $|T|=1$ constant but its direction changes

Curvature is defined as $K=\left|\frac{d T}{d s}\right| \begin{aligned} & \text { the magnitude of the } \\ & \text { change in }\end{aligned}$
 Chansein T with respect to s with
?? What is K for (straight line) $K=0$
To calculate K Note that wee need S. 1 parametrize $r(t)$ with s to get $r(s)$

$$
\begin{aligned}
& r-T=\frac{d r}{d s} T \text { is functions } \\
& \rightarrow K=\left|\frac{d T}{d s}\right|=\left|\frac{d^{2} r}{d s^{2}}\right| \\
& K \text { is function of } S
\end{aligned}
$$

$$
K=\left|\frac{d T}{d s}\right|=\left|\frac{d T}{d t} \frac{d t}{d s}\right|=\left|\frac{d T}{d t} \quad \frac{1}{d s}\right|=\left|\frac{d T}{d t} \frac{1}{|V|}\right|
$$

So $K=\left|\frac{\partial J}{\partial t} \cdot \frac{1}{|V|}\right|$ mach easier and No need for parnmetrization with are length.

1) $V=\frac{d r}{d t}, T=\frac{V}{|V|} \quad T$ is function of t
2) $K=\frac{1}{|V|}\left|\frac{d T}{d t}\right| \quad K$ is function of t

Ex 1 page 729 for straight line $k=0$

$$
\begin{aligned}
& r(t)=\stackrel{\rightharpoonup}{C}+t \stackrel{\rightharpoonup}{V} \\
& T=\frac{V}{|V|} \quad V=r^{\prime}(t)=\vec{V} \Rightarrow T=\frac{\stackrel{\rightharpoonup}{V}}{|\vec{V}|}
\end{aligned}
$$

$$
\frac{d T}{d t}=0 \Rightarrow K=\frac{1}{\mid \vec{v}} \cdot\left|\frac{d T}{d t}\right|=0 \text { as expertept. }
$$

Ex page 729 find the curvature of

For fan find K using $K=\left|\frac{d T}{d S}\right|$. In this case it is fairly easy
Note: We can use $K=\left|\frac{d T}{d t} \cdot \frac{1}{|v|}\right|$ for carves in space but in the next section we will Learn a more convenient formula.
Note: as $T=\frac{V}{|V|}=\frac{r^{\prime}(t)}{\left|\gamma^{\prime}(t)\right|}$ changes direction, the curve bends. And we defind the rate of change of T with respect to S as curvature $K=\left|\frac{d T}{d S}\right|=\frac{1}{|v|}\left|\frac{d T}{d t}\right|$ Another important unit vector is a normal vector to T^{\top} which is the Namal to Tin the direction of the turn.

Unit Normal Vector
We hare seen in $13-1$ that if $\mid r(t \mid)=$ Constant $r(t) \cdot r(t)=|r+t|^{2}$ $t \operatorname{sn} r^{\prime}(t) \cdot \gamma(t)=0 \ldots \frac{d T}{d s} \cdot T=0(|T|=1) \quad \frac{d r}{d t} \uparrow \quad=c^{2}$
$\Rightarrow \frac{d T}{d s}$ is Normal to T

$$
\begin{aligned}
& r^{\prime}(t) \cdot \gamma(t)+r(t) \cdot r^{\prime}(t)=0 \\
& 2 r^{\prime}(t) \cdot \gamma(t)=0 \\
& r^{\prime}(t) r(t)=0
\end{aligned}
$$

$\Rightarrow \frac{\frac{d T}{d S}}{\left|\frac{d T}{d s}\right|}$ a Unit Normal t. T. but $k=\frac{d T}{d s}$
So the principal unit Normal to T is $N=\frac{1}{K} \frac{d T}{d S}$
Note the is formula requires K and S

$$
\begin{aligned}
& N=\frac{1}{K} \frac{d T}{d s} \\
& \Rightarrow N=\frac{\frac{1}{d t}}{\frac{1}{|V|}\left|\frac{d T}{d t}\right|} \frac{d T}{\frac{d T}{K}} \frac{d t}{d s} \\
& \left.\frac{1 T}{d t} \right\rvert\, \frac{1}{\frac{d T}{d s}} \frac{1}{|d|}\left|\frac{d T}{d t}\right| \\
& \frac{d T}{d t} \frac{1}{\frac{d /}{d t}} \frac{d s}{d t}=|v| \\
& \frac{m}{d t}
\end{aligned}
$$

Ex 3 page page 730 find T and N for the circular motion $\gamma(t)=(\cos 2 t) i+(\sin 2 t) j$.

$$
\begin{aligned}
& V=-2 \sin 2 t i+2 \cos 2 t j \Rightarrow T=\frac{-2 \sin 2 t i+2 \cos 2 t j}{2}=-\sin 2 t i+\cos 2 t j \\
& \frac{d T}{d t}=-2 \cos 2 t i-2 \sin 2 t j \Rightarrow N=\frac{-2 \cos 2 t i-2 \sin 2 t j}{2}=-(\cos 2 t) i-(\sin 2 t) j
\end{aligned}
$$

Circle of Curvature. (osculating circle)
The circle of curvature at a point Pis the circle whin h

1) is tangent to the curve at 8
(has sues T a the crim at p)
2) has the same curvature as the cure ats p
3) Lies tward N of the curve at p

The radius of this circle is $] ? \rho=\frac{1}{K}\left[\begin{array}{l}a \text { we saw } \\ \text { in } 6 \times 2 \alpha^{2} p a x \\ 729\end{array}\right\}$
Ex 4 page 731
Find and graph the osculating circle of $y=x^{2}$ at the origin cartesian eqn ?? No worry, in section 11.1 we Nederned how to parametrize a curve easily.
Let $x=t \Rightarrow y=t^{2} \quad \therefore$ the vector representation of He carne is $r(t)=t i+t^{2} j$
We Need the Norrod and the curvature so we need t $T=\frac{1 i+2 t j}{\sqrt{1^{2}+4 t^{2}}}=\frac{1}{\sqrt{1+4 t^{2}}} i+\frac{2 t}{\sqrt{1+4 t^{2}}} j$ at $t=0($ (rision $) T=i$

$$
\frac{d T}{d t}=-\frac{1}{2}\left(1+4 t^{-1 / 2}\right)^{-3 / 2} i+\left(2\left(1+4 t^{-1}\right)^{-2}-8 t\left(1+4 t^{-3 / 2}\right) j\right.
$$

$$
\left.K_{t=0}^{d t}=\frac{1}{\sqrt{v} \mid}\left|\frac{d T}{\partial t}\right|_{t=0}=\frac{1}{\sqrt{1+4(0)}}|(2 j)|=\mid 2 j\right) \left\lvert\,=2 \quad \therefore \rho=\frac{1}{2}\right.
$$

$\stackrel{t=}{\Rightarrow}$ center is $\left(0, \frac{1}{2}\right) \Rightarrow$ eqn is $(x-0)^{2}+\left(\frac{y}{2}-\frac{1}{2}\right)^{2}=\left(\frac{1}{2}\right)^{2}$

Note circle is better Ans of the sure than tangent.
K \& N for space curves.
Just as for plane curves

$$
\begin{aligned}
& T=\frac{d r}{d s}=\frac{V}{|V|}=\frac{\frac{d r}{\partial t}}{\left|\frac{d r}{d t}\right|} \\
& K=\left|\frac{d T}{d s}\right|=\frac{1}{|V|}\left|\frac{d T}{d t}\right| \\
& N=\frac{\frac{d T}{d s}}{\left|\frac{d T}{d s}\right|}=\frac{1}{K} \frac{d T}{d s}=\frac{\frac{d T}{d t}}{\left.\frac{d T}{d t} \right\rvert\,}
\end{aligned}
$$

Ex 5 page. E E 6 find the curvature for the he lix pare $732+733$

$$
\gamma(t)=(a \cos t) i+(a \sin t) j+b t K
$$

$$
a, b \geqslant 0 a^{2}+b^{2} \neq 0 \Rightarrow|v|=0 K \text { is not Netimes }
$$

Then analjze it based on different varus of a and b See page 732 at th bottom
Ten find N forth helix (E xt) and describe how the vector is turning

13.5 Tangential and Normal Components of Acceleration Before that, The TNB Frame
$\gamma(t)$ is the position vector for a moving particle in space. to the partide, the cartesian i, j, and x coordinates are not truly relevant. What is relevant gre

1) the particles forward direction (the unit tangent Vector T)
2) The particles turning direction (the unit normal vector N)
3) The particles twist direction (the unit binomial vector B)
(The direction of exiting the plane
determined by T and N
Together, These vectors define the particles Moving frame which is called the Frenet frame or TNB frame.

Now use maple Tools, Tutor, vector ale, Space curve. File, close and return poo.

Exercise 7 Page 738. Find r, T, N, B at $t=\frac{\pi}{4}$ Hen find the Osculating Normal, and rectifying planes at $t=\frac{\pi}{4}$

Tangential and Norma Components of acceleration
The acceleration $a=d y$ vector always lies in the osculating plans (The T and N plane) as we willie. and we usually want to know how mush of it in the direction of T and how mush in the direction of N.
we want $a=$

me

$$
a=\frac{d V}{d t}=\frac{d}{d t}\left(T \frac{d s}{d t}\right) \quad \text { or } V=\frac{d r}{d t}=\frac{d r}{d s} \frac{d s}{d t}
$$

promentride direction of magninim((gent) $\Rightarrow V=T \frac{d s}{d t}$

$$
\begin{aligned}
& \Rightarrow a=\frac{d T}{d t} \frac{d s}{d t}+T \frac{d^{2} s}{d t^{2}}=\frac{d T}{d s} \frac{d s}{d t} \frac{d s}{d t}+T \frac{d^{2} s}{d t^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow a=K\left(\frac{(d s}{d t}\right)^{2} N+\frac{d^{2} s}{d t^{2}} T=\frac{K|V|^{2}}{N o r m d} N+\frac{d}{\frac{d t}{d t}|v|} T
\end{aligned}
$$

Read the first parsiraph offer def Page 735 .

$$
\text { Ex } 1 \text { Page } 736
$$

Torsion

osculativing plane

Curviture $K=\left|\frac{d T}{d s}\right|$ how fast that changes with respecttos (How fast the Norma plane turns)

Torsion $T=-\frac{d B}{d S} \cdot N$ how fast B changes (How fast the osculation plane turns about T)
$\Rightarrow \frac{d B}{d s}=T \times \frac{d N}{d s} \Rightarrow \frac{d B}{d s}$ is orthogonal to T
$\Rightarrow \frac{d B}{d S}=-\mathcal{T} N$ multiple of $N(-$ is convention) dot both side with $N \Rightarrow \frac{d B}{d S} \cdot N=-T \quad(N \cdot N)=|N|^{2}=1$

$$
\Rightarrow T=-\frac{d B}{d S} \cdot N
$$

Note formulas page 756
Exercise 9 find B and T for

$$
r(t)=(3 \sin t) i+(3 \cos t) j+4 t k
$$

13.5 Exercises

1) $r(t)=a \cos t i+a \sin t j+b t K$

$$
\begin{aligned}
& a_{T}=\frac{d}{d t}|v| \quad V=-a \sin t i+a \cos t j+b \\
& a_{T}=\frac{d}{d t}\left(\sqrt{a^{2}+b^{2}}\right)=0 \\
& a_{N}=k|v|=\sqrt{a^{2}+b^{2}} \\
& a^{2}=\frac{|a|}{a^{2}+b^{2}}\left(\sqrt{a^{2}+b^{2}}\right)^{2}=|a|
\end{aligned}
$$

so $a=|a| N+0 T$

$$
\begin{aligned}
& \text { 5) } r(t)=t^{2} i+\left(t+\frac{1}{3} t^{3}\right) j+\left(t-\frac{1}{3} t^{3}\right) K \quad t=0 \\
& a=a_{N} N+a_{T} T \quad a_{T}=\frac{d}{d t}|v| a_{N}=k|v|^{2}=\sqrt{\mid a^{2}-a_{T}^{2}} \\
& v=2 t i+\left(1+t^{2}\right) j+\left(1-t^{2}\right) K \Rightarrow|v|=\sqrt{4 t^{2}+\left(1+t^{2}\right)^{2}+\left(1-t^{2}\right)^{2}} \\
& a_{T}=\frac{d}{d t}|v|=\frac{1}{2}\left(4 t^{2}+\left(1+t^{2}\right)^{2}+\left(1-t^{2}\right)^{2}\right)^{-\frac{1}{2}}\left(8 t+2\left(1+t^{2}\right) 2 t+2\left(1-t^{2}\right)(-2 t)\right) \\
& a_{T}(0)=\frac{1}{2}(0+1+1)^{-\frac{1}{2}}(0+0+0)=0 \\
& a=2 i+2 t j-2 t K \Rightarrow|a(0)|=\sqrt{4+0-0}=2 \\
& \therefore a^{2}(0)=\sqrt{2^{2}-0^{2}}=2 \quad \therefore a=2 N+0 T
\end{aligned}
$$

7) $r(t)=\cos t i+\sin t j-K \quad t=\pi / 4$ TNB frame

$$
\begin{aligned}
& V=-\sin t i+\cos t j-0 k \quad|V|=1 \\
& T=-\sin t i+\cos t j \Rightarrow T\left(\frac{\pi}{4}\right)=-\frac{1}{\sqrt{2}} i+\frac{1}{\sqrt{2}} j \\
& \frac{d T}{d t}=-\cos t i-\sin t j \Rightarrow\left|\frac{d T}{\sqrt{t}}\right|=1 \\
& \therefore N=-\cos t i-\sin t j \Rightarrow N\left(\frac{\pi}{4}\right)=-\frac{1}{\sqrt{2}} i-\frac{1}{\sqrt{2}} j \\
& B=T \times N=\left|\begin{array}{cc}
i & k \\
-\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
-\frac{1}{\sqrt{2}} & 0 \\
-\frac{1}{\sqrt{2}} & 0
\end{array}\right|=(0) i-(0) j+(1) M=K
\end{aligned}
$$

q)

$$
\begin{aligned}
& r(t)=3 \sin t i+3 \cos t j+4 t k \\
& T=\frac{3}{5} \cos t i-\frac{3}{5} \sin t j+\frac{4}{5} k \quad N=-\sin t i-\cos t j \quad K=\frac{3}{25}
\end{aligned}
$$

from Exersise 913,4

$$
\begin{aligned}
& B=T \times N=\left|\begin{array}{ccc}
i & j & k \\
\frac{3}{5} \operatorname{cost} & -\frac{3}{5} \sin t & \frac{4}{5} \\
-\sin t & -\cos t & 0
\end{array}\right|=\frac{4}{5} \cos t i-\frac{4}{5} \sin t j-\frac{3}{5} K \\
& T=\left|\begin{array}{lll}
\dot{x} & \dot{y} & \dot{z} \\
\dot{x} & \dot{y} & \dot{z} \\
\ddot{x} & \ddot{y} & \ddot{z} \\
|v \times a|^{2}
\end{array}\right| \text { misht samtime } k=\frac{|v \times a|}{|v|^{3}} \Rightarrow|v \times a|=K|V|^{3}
\end{aligned}
$$

$$
\begin{aligned}
& V=3 \cos t i-3 \sin t j+4 k \quad \Rightarrow|v|=\sqrt{9+16}=5 \\
& a=-3 \sin t i^{\prime}-3 \cos t j+0 k \\
& |V \times a|=k|v|^{3}=\frac{3}{25} s^{3}=15 \\
& \left|\begin{array}{lll}
\dot{x} & \dot{y} & \dot{z} \\
\dot{x} \dot{y} & z \\
\ddot{x} & \ddot{y} & \ddot{z}
\end{array}\right|=\left|\begin{array}{ccc}
3 \cos t & -3 \sin t & 4 \\
-3 \sin t & -3 \cos t & 0 \\
-3 \cos t & 3 \sin t & 0
\end{array}\right|=3 \cos t(0)=-3 \sin t(0) \\
& \\
& \\
& \\
& \\
& \therefore 4\left(-9 \sin ^{2} t-9 \sin ^{2} t\right) \\
& \therefore=4(-9) \quad=4(-9)=-36
\end{aligned}
$$

16) $\gamma(t)=\cosh t i-\sin t j+t k$

$$
\begin{aligned}
& V=\sinh t \nu-\cosh t j+1 K \Rightarrow \quad|V|=\sqrt{\cosh 2 t+1} \\
& \Rightarrow T=\frac{1}{\sqrt{2}} \tanh t i-\frac{1}{\sqrt{2}} j+\frac{1}{\sqrt{2}} \operatorname{sech} t k \quad=\sqrt{2 \cosh ^{2} t} \\
& \frac{d J}{d t}=\frac{1}{\sqrt{2}} \operatorname{sech}^{2} t i-0 j-\frac{1}{\sqrt{2}} \operatorname{sech} t \tanh t \beta \quad \cosh 2 t=\cosh h^{2}+\sin ^{2} \\
& \left|\frac{d T}{d t}\right|=\sqrt{\frac{1}{2} \operatorname{sech}^{4} t+\frac{1}{2} \operatorname{sech}^{2} t \tanh ^{2} t} \\
& =\frac{1}{\sqrt{2}} \operatorname{sech} t \sqrt{\operatorname{sech}^{2} t+\tanh ^{2} t}=\frac{1}{\sqrt{2}} \operatorname{sech} t \\
& \therefore N=\operatorname{sech} t i-\tanh t \neq \\
& \begin{aligned}
& \therefore B= \left.\begin{array}{ccc}
i & j & k \\
\frac{1}{\sqrt{2}} \tanh t & -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \operatorname{sech} t \\
\operatorname{sech} t & 0 & -\tanh t
\end{array} \right\rvert\,= \\
&+\frac{1}{\sqrt{2}} \operatorname{sech} t i-\left(-\frac{1}{\sqrt{2}} \tanh ^{2} t-\frac{1}{\sqrt{2}} \operatorname{sech}^{2} t\right) j \\
&+\frac{1}{\sqrt{2}} \operatorname{sech} t V
\end{aligned} \\
& \Rightarrow B=\frac{1}{\sqrt{2}} \operatorname{sech} t i+\frac{1}{\sqrt{2}} j+\frac{1}{\sqrt{2}} \operatorname{sech} t K
\end{aligned}
$$

for Torsion $a=\operatorname{cosht} i-\sinh t j+0 K \quad \operatorname{rosh}^{2} \sinh ^{2}=1$

$$
V \times a=\left|\begin{array}{ccc}
i & j & k \\
\sinh t & -\cosh t & 1 \\
\cosh t & -\sinh t & 0
\end{array}\right|=+\sinh t i--\cosh t j+\left(-\sinh ^{2} t-\cosh ^{2} t\right) K
$$

$$
\begin{aligned}
& |v \times a|^{2}=\left(\sqrt{\sinh ^{2}+\cosh ^{2} t+1}\right)^{2}=\sinh ^{2} t+\cosh ^{2} t+1 \\
& \therefore \tau=\frac{\left|\begin{array}{ll}
\sinh t-\cosh t & 1 \\
\cosh t-\sinh & 0 \\
\sinh t-\cosh t & 0
\end{array}\right|}{|v \times a|^{2}}=\frac{1 v-1\left(-\cosh ^{2} t=-\sinh ^{2} t\right)}{|v \times a|^{2}} \\
& T=\frac{1}{\sinh ^{2} t+\cosh ^{2} t+1} \\
& \cosh ^{2} t
\end{aligned}=\frac{1}{2 \cosh ^{2} t} .
$$

Ch 14 Partial Derivatives
In a single variable function, $y=f(x)$, where there is only one independent variable, the rate of change of y (the degandent) solely defends on the change of x

However, Many functions defends on more than one Variable such as $V=\pi r^{2} h$ (the volume of a cylinder). In these Functions the Changes of the dependent with respect to The independents are more varied and interesting than functions of one variable
14-1 Functions of severe variables
Definition:
If D is a set of n-tuples real numbers $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ Then a real-Valued function on D is a rule That assigns a unique real number $w=f\left(x_{1}, x_{2}, \cdots x_{n}\right)$ to each element in D
$x_{1}, x_{2}, \ldots, x_{n}$ are independent variables. W is the dependent
Examples of functions $y=f(x)$ single ind var Note (these are the convention) $\begin{aligned} & \text { Letters for int and in }\end{aligned} \rightarrow z=f(x, y)$ Two ind Var
 for more than three $D=f\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$ when doing Arg we ne letters that describe what the Variables stand fir.

Domain and Ranges of fun of several Vars as in the case of a single var fun, if the domain is not specified, then it will be the set of n-typles $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ that does not lend to complex numbers or division by zero (Leads to real number)
Ex 1 page 748
a) $z=\sqrt{y-x^{2}}$

Domain Range
How do I Know for sure $Z \in[0, \infty)$ Fix $x=0 \quad z=\sqrt{y} \quad y \geqslant 0$

$$
y \geqslant x^{2} \quad[0, \infty)
$$

Note that the points in the Nomain are pairs of real numbers (x, y) D is a region in the $x y$-plane such that $y \geqslant x^{2}$
b) $W=x y \operatorname{Ln} z$
Domain Range
$z>0 \quad(-\infty, \infty)$
x, y real
numbers $\left\{\begin{array}{l}\text { Hor Vo I know } \\ \text { for sure } w \in(-\infty, \infty) \\ \text { fix } z=x=1 \\ w=x x \text { any hing, se } \\ w \text { any thins. } \\ \text { ne }\end{array}\right.$

Note that the points in the domain are triplets of red numbers (x, y, z) D is a region in space where $z>0$ (the half space

$$
\begin{aligned}
& \text { Domain Range } \\
& z>0 \quad(-\infty, \infty) \\
& x, y \text { real } \\
& \text { numbers }
\end{aligned}
$$

 above tex $x y$-plane)

Funstions of Two variables (we man indegentent variables)
For a function of two variables $Z=f(x, y)$, The Domain is a region in the $x y$-plane

Just as in $y=f(x)$ the domain is an interval that is either closed, open, or writhen $([a, b],(a, b),(a, b])$
The domain of $z=f(x, y)$ is a region that is either Closed, open, or neither.

See definitions page 749

bounded see definitions , region Page 749

Ex 2 page 749 Describe the domain of $z=\sqrt{y-x^{2}}$

D $y \geqslant x^{2}$ all boundary points are inchuled \Rightarrow closed region The region ike not lie in a dish of fixed radius \Rightarrow unbounded region

Graphs, level curves, and contures of $z=f(x, y)$
The graphs of $z=f(x, y)$ are the set of points (x, y, z) in space which are called $\frac{\text { surfaces. }}{z}$
The domain is R in xyplane The surface consists of points $\left(x_{0}, y_{0}, z_{0}\right)$ that are verticdy
 away from $\left(x_{0}, y_{0}\right)$ a directed
distance $z_{0}=f\left(x_{0}, y_{0}\right)$
Ex 3 Page 750 graph $z=100-x^{2}-y^{2}$ Note D is the wy plane

We don't Want to plot a ll points!!

$$
\begin{aligned}
& \text { if } z=0 \Rightarrow 0=100-x^{2}-y^{2} \Rightarrow x^{2}+y^{2}=100 \\
& \text { if } z=51 \Rightarrow x^{2}+y^{2}=49 \\
& \text { if } z=75 \Rightarrow x^{2}+y^{2}=25 \\
& \text { if } z=100 \Rightarrow x^{2}+y^{2}=0
\end{aligned}
$$

these curves (on the $x y$ plane) are called Level curves $(z=0$) The curves on the surface with fixed z values are conture curves

Note paragraph bellow Figure 14.7 page 751

Functions of Three variables
comparison

$$
y=f(x) \quad z=f_{2}^{f}(x, y) \quad w=f(x, y, z)
$$

 is called a level surface.

Ex 4 page 750 Describe the lenelswrface of

$$
f(x, y, z)=\sqrt{x^{2}+y^{2}+z^{2}}
$$

function of 3 imo Var \therefore domain. region in space (3D) Gran in 4D cart imarain
lend surfaces are $c=\sqrt{x^{2}+y^{2}+z^{2}} \Rightarrow c^{2}=x^{2}+y^{2}+z^{2}$ which are spheres in 3D

for any point on a specific sphene the value of the function is constant as we move in or ont to another sphere the value of the function changes
\# you maywant to we Zeghos examples on lend curves.

14.1 Exersises

1) $f(x, y)=x^{2}+x y^{3}$
a) $f(0,0)=0^{2}+(0)(0)^{3}=0$
b) $f(-1,1)=(-1)^{2}+-1(1)^{3}=1-1=0$
2) $f(x, y)=\cos ^{-1}\left(y-x^{2}\right) \quad$ domain of $\cos ^{-1}(Q)$ is $[-1,1]$
\therefore Domain of $\cos ^{-1}\left(y-x^{2}\right)$ is $-1 \leqslant y-x^{2} \leqslant 1$

$$
x^{2}-1 \leqslant y \leqslant x^{2}+1
$$

10) $f(x, y)=\operatorname{Ln}(x y+x-y-1)$

Domain $x y+x-y-1>0 \Rightarrow y(x-1)>(1-x)$ $y>\frac{(1-x)}{(x-1)} \quad$ if $x-1>0, x>1 \Rightarrow y>-1 \quad x>1$
$y<\left(\frac{1-x}{x-1}\right)$ if $x-1<0, x<1 \Rightarrow y<-1 \quad x<1$

16) $f(x, y)=\sqrt{25-x^{2}-y^{2}} \quad c=0,1,2,3,4$

$$
c=\sqrt{25-x^{2}-y^{2}} \Rightarrow c^{2}=25-x^{2}-y^{2} \Rightarrow x^{2}+y^{2}=25-c^{2}
$$

17) $f(x)=y-x \quad$ (Plane through the origfon)
a) Domain is the entire $x y$-plane b) Range $(-\infty, \infty)$
c) Lenelcurnes $c=y-x \Rightarrow y=x+c$ Lend curve are straight lines with slope equal 1

d) No boumitries (domain is the entire xy-plane)
e) Both!
f) unbounded
23) $f(x, y)=\frac{1}{\sqrt{16-x^{2}-y^{2}}}$
a) Domain $16-x^{2}-y^{2}>0 \quad x^{2}+y^{2}<4^{2}$ all points inside the circle $x^{2}+y^{2}=4^{2}$

b) the largest the denominator $\sqrt{16-x^{2}-y^{2}}=\sqrt{16-\left(x^{2}+y^{2}\right)}$

The $x^{2}+y^{2}$ is s alost (0)
\therefore the smallest z is $\frac{1}{\sqrt{4}}=\frac{1}{4}$ as $x^{2}+y^{2}$ gets large to 16

$$
Z \text { become lampas to } \infty
$$

\therefore Range is $\left[\frac{1}{4}, \infty\right)$
c) $c=\frac{1}{\sqrt{16-x^{2}-y^{2}}} \Rightarrow \frac{1}{c^{2}}=16-x^{2}-y^{2} \Rightarrow x^{2}+y^{2}=16-\frac{1}{c^{2}}$

Level curves are circle centered at the origion

d) Hecircte $x^{2}+y^{2}=4^{2}$
e) open
f) bounded
38) $f(x, y)=\sqrt{x} \quad z=\sqrt{x} \quad$ (cylinder)

b) lend curw $c=\sqrt{x}$

$$
\Rightarrow x=c^{2} \quad \text { Note } c>0
$$

46) $f(x, y)=1-|x|-|y|$

b)

$$
\begin{aligned}
& c=|-|x|-|y| \\
& |y|=1-|x|-c \\
& |y|=-|x|+1-c
\end{aligned}
$$

49)

$$
\begin{aligned}
& f(x, y)=16-x^{2}-y^{2} \quad(2 \sqrt{2}, \sqrt{2}) \\
& c=16-x^{2}-y^{2} \Rightarrow c=16-(2 \sqrt{2})^{2}-(\sqrt{2})^{2}
\end{aligned}
$$

$$
6=16-x^{2}-y^{2}
$$

$$
c=6
$$

$\therefore x^{2}+y^{2}=10$ is the level
curve throned $(2 \sqrt{2}, \sqrt{2})$

50) $f(x, y)=\sqrt{x^{2}-1},(1,0) \quad c=\sqrt{x^{2}-1} \Rightarrow c=\sqrt{1^{2}-1}=0$

$$
\begin{aligned}
& c=0 \Rightarrow 0=\sqrt{x^{2}-1} \\
& \Rightarrow x^{2}-1=0 \Rightarrow x^{2}=1 \quad x= \pm 1
\end{aligned}
$$

64) $g(x, y, z)=\frac{x-y+z}{2 x+y-z}(1,0,-2)$

$$
c=\frac{x-y+z}{2 x+y-z} \Rightarrow c=\frac{1-0+-2}{2(1)+0-2}=\frac{-1}{4}
$$

lend survive $c=\frac{-3}{4}$ is $\frac{-1}{4}=\frac{x-y+z}{2 x+y-z} \Rightarrow-2 x-y+z=4 x-4 y+4 z$
$\Rightarrow-6 x+3 y-3 z=0$ (yon and sivill) Plane in space. The Value of $g(x, y, z)$ at any point in this glam is $\frac{-1}{4}$ This plane contalb $(1,0,-2)$
(subset of
the Domain

$$
\begin{aligned}
& \text { (7) } f(x, y)=\int_{x}^{y} \frac{d Q}{\sqrt{1-a^{2}}}(0,1) \\
& f(x, y)=\left.\sin ^{-1}(a)\right|_{x} ^{y} \\
& f(x, y)=\sin ^{-1}(y)-\sin ^{-1}(x)
\end{aligned}
$$

Domain $-1 \leqslant y \leqslant 1 \cap-1 \leq x \leq 1$
for levenl cume through $(0,1)$

$$
\begin{aligned}
c=\sin ^{-1}(y)-\sin ^{-1}(x) \Rightarrow c & =\sin ^{-1}(1)-\sin ^{-1}(0) \\
c & =\frac{a}{2}-0 \\
c & =\frac{a^{2}}{2}
\end{aligned}
$$

\therefore lenel curne throwf) $(0,1)$ is $\frac{\pi}{2}=\sin ^{-1}(y)-\sin ^{-1}(x)$

14.2 Limits and continuity in higher dimensions

In one variable fun $y=f(x)$

$$
\operatorname{Lim}_{x \rightarrow x_{0}} f(x)=L \text { if for every } \varepsilon>0
$$

there exists a $\delta>0$ such that

$$
0<\left|x-x_{0}\right|<\delta \Rightarrow|f(x)-L|<\varepsilon
$$

In two variable function $\operatorname{Lim} f(x, y)=L$ if for venery $E>$ $\left.(x, y) \rightarrow x_{0} y_{0}\right)$
There exists a $\delta>0$ such that
$0<\sqrt{\left(x-x_{0}\right)^{2}-\left(y-y_{0}\right)^{2}}<\delta \Rightarrow|f(x, y)-L|<\varepsilon$

Note Theorem 1 page 757
Ex 1 page 757
(a) $\lim _{(x, y) \rightarrow(0,1)} \frac{x-x y+3}{x^{2} y+5 x y-y^{3}}=\frac{0-(0)(1)+3}{(0)^{2}(1)+5(0)(1)-(1)^{3}}=-3$
(b) $\lim _{(x, y) \rightarrow(3,-4)} \sqrt{x^{2}+y^{2}}=\sqrt{(3)^{2}+(-4)^{2}}=\sqrt{25}=5$

$$
\begin{aligned}
& \text { Ex } 2 \text { Page } 757 \text { (x,y) } \lim _{(0,0)} \frac{x^{2}-x y}{\sqrt{x}-\sqrt{y}} \text {. (rewrite) } \\
& \operatorname{Lim}_{(x, y) \rightarrow(0,0)} \frac{x^{2}-x y}{\sqrt{x}-\sqrt{y}}=\frac{0}{0}=\operatorname{Lim}_{(x, y) \rightarrow(0,0)} \frac{x(x-y)}{\sqrt{x}-\sqrt{y}} \cdot \frac{\sqrt{x}+\sqrt{y}}{\sqrt{x}+\sqrt{y}}=\operatorname{Lim}_{(x, y) \rightarrow(0,0)} \frac{x(x-y)(\sqrt{x}+\sqrt{y})}{x-y} \\
& =\operatorname{Lim}_{(x, y) \rightarrow(0,0)} x(\sqrt{x}+\sqrt{y})=0
\end{aligned}
$$

Usually Limits of $f(x, y)$ are not easy to find. In some cases $(E x 3)$ we Can use the definition, but wingtle def is abs hard. In other cases we can show that the Limit DNE by examining two paths.

Ex 4 page $759 \quad z=f(x, y)=\frac{y}{x} \quad \lim _{(x, 0) \rightarrow(0,0)} \frac{y}{x}=\frac{0}{0}$
We can afgranch $(0,0)$ cant tell allong many direction.
If we fink Two direction where the Limit is not
the same, then it DNE
Along $y=x \operatorname{Lim}_{(x, y) \rightarrow(0,0)} \frac{y}{x}=\operatorname{Lim}_{(x, y) \rightarrow(0,0)} \frac{x}{x}=1$
Along $y=-x \quad \operatorname{Lim} \frac{y}{x}=\operatorname{Lim} \frac{-x}{x}=-1$
$(x, y) \rightarrow(0,0) \quad(x, y) \rightarrow(0,0)$
$\therefore \operatorname{Lim} \frac{y}{x}$ DNE since the Limits a long different $(x, y) \rightarrow(x,-))^{x}$ paths are different

Two-Path Test for Nonexistence of a Limit If a function $f(x, y)$ has different limits along two different paths in the domain of f as (x, y) approaches $\left(x_{0}, y_{0}\right)$, then $\lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)} f(x, y)$ does not exist.

EXAMPLE 6 Show that the function

$$
f(x, y)=\frac{2 x^{2} y}{x^{4}+y^{2}}
$$

(Figure 14.14) has no limit as (x, y) approaches $(0,0)$. \qquad

- we want to find two paths in th doming When the limit is different.
No genera Method. Toy first doug $x=x_{0} \& \&=y$
However, Note, along $y=x^{2}$ we set a Limit (Not \div)
Note $y=x^{2}$ is agita to $(0,0)$

$$
\operatorname{Lim}_{\substack{(x, x) \rightarrow(0,0) \\ y=x^{2}}} \frac{2 x^{2} y}{x^{4}+y^{2}}=\operatorname{Lim}_{(x, 0) \rightarrow(0,0)} \frac{2 x^{2} x^{2}}{x^{4}+x^{4}}=\operatorname{Lim}_{(x, y) \rightarrow-10,0)} 1=1
$$

Now it is easy to see that along $y=a x^{2}$ will give different limit
abe y $y=3 x^{2}$

$\begin{aligned} & \text { along } y=-x \Rightarrow \\ & \text { gong cont the rath } \\ & \text { ingot in the domain }\end{aligned} \left\lvert\, \frac{x^{2}+1}{x^{2}-x^{2}}=\frac{-x^{2}+1}{0} \nRightarrow \frac{0}{0} N_{0} \operatorname{gog}_{d}\right.$

$$
\begin{aligned}
& \text { a long } x=1 \Rightarrow \frac{y+1}{1-y^{2}}=\frac{y+1}{(1-y)(1+y)} \Rightarrow \lim =\frac{1}{x^{2}} \\
& \text { a long } \left.y=-1 \Rightarrow \frac{-x+1}{x^{2}-1}=\frac{-x+1}{(x-1)(x+1}=\frac{-1}{x+1}=\frac{-1}{2}\right) N_{E} \\
& \text { thong } y=x-1 \Rightarrow y=x+1
\end{aligned}
$$

continuity
DEFINITION A function $f(x, y)$ is continuous at the point $\left(x_{0}, y_{0}\right)$ if

1. f is defined at $\left(x_{0}, y_{0}\right)$,
2. $\lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)} f(x, y)$ exists,
3. $\lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)} f(x, y)=f\left(x_{0}, y_{0}\right)$.

A function is continuous if it is continuous at every point of its domain.

Ex 5 page 759
Limalong $y=a X$ for $(0,0)$
EXAMPLE 5 Show that

$$
f(x, y)= \begin{cases}\frac{2 x y}{x^{2}+y^{2}}, & (x, y) \neq(0,0) \\ 0, & (x, y)=(0,0)\end{cases}
$$

ores Liam DNE so Not continuow at $(0,0)$
Continuity at Composites: if $f(x, y)$ is cantim and $g(x)$ is ion then $g(f(x, 0))$ is continnown $g(u)=e^{u} \quad f(x, y)=x-y$
$\Rightarrow g(f)=e^{x-y}$ is continuous Rand fan of more than Two Vas \& Extrem Values pase 761

14.3 Partial derivatives

In single variable fun $y=f(x)$

$$
\left.\frac{d y}{d x}\right|_{x_{0}}=\operatorname{Lim}_{h \rightarrow 0} \frac{f\left(x_{0} h\right)-f\left(x_{0}\right)}{h} \quad \frac{f^{\left(x_{0}\right)} /}{x_{0} x_{+h}}
$$

which is the rate ot change of the kegendent y with respect to the independent x
In $z=f(x, y)$, The rate of change in z degenats on Two independent variables (x and y).
However; if we fix one of the m, we can find the rate of change of z with the other

Definition

$$
\begin{aligned}
& \operatorname{Lim}_{h \rightarrow 0} \frac{f\left(x_{0}+h, y_{0}\right)-f\left(x_{0}, y_{0}\right)}{h}=\left.\frac{\partial f}{\partial x}\right|_{\left(x_{0}, y_{0}\right)} \\
& \text { (partial derivative of } f \text {) }
\end{aligned}
$$

$\frac{\partial f}{\partial y}$ is similar rest to x

$$
z=f(x)
$$

Notations. $\frac{\partial f}{\partial x}=f_{x}=\frac{\partial z}{\partial x}=Z_{x}$

To find partid derivatives, we use the the rules for single variable function since we are Keeping only one variable unfixed

Examples 1, 2, 3, 4 implicit, 5 Page (766-768)
Partid derivatives for fun of more than two var are simitar

Example 6 page 768
Second order partial derivations (4 of them)

$$
\begin{aligned}
& \frac{\partial^{2} f}{\partial x^{2}}=f_{x x}, \quad \frac{\partial^{2} f}{\partial y \partial x}=f_{x y}=\frac{\partial}{\partial y}\left(\frac{\partial f}{\partial x}\right) \\
& \frac{\partial^{2} f}{\partial y^{2}}=f_{\partial y}, \frac{\partial^{2} f}{\partial x \partial y}=f_{y x}=\frac{\partial}{\partial x}\left(\frac{\partial f}{\partial x}\right)
\end{aligned}
$$

Example 9 page 770 Theorem 2 pase 770 Examplito page 7
Higher order Partial derivatin Ex II page 7
differentiability
Note: it is not enough that $f_{x}\left(x_{0}, y_{0}\right.$) and $f_{y}\left(x_{0} y_{0}\right)$ exist for f to be differatible at $\left(x_{0}, y_{0}\right)$

Definition $z=f(x, y)$ is diffrentionteat $\left(x_{0}, y_{0}\right)$ if

Stiffive $\Delta z=f_{x}\left(x_{0}, y_{2}\right) \Delta x+f_{y}\left(x_{0}, y_{2} \Delta y+\varepsilon \Delta x+\varepsilon_{\varepsilon} \Delta y\right.$
When $\& \& \varepsilon_{2} \rightarrow 0$ ar $\Delta x \& \Delta y \rightarrow 0$
Theorem 3 page 771
THEOREM 3-The Increment Theorem for Functions of Two Variables Suppose that the first partial derivatives of $f(x, y)$ are defined throughout an open region R containing the point $\left(x_{0}, y_{0}\right)$ and that f_{x} and f_{y} are continuous at $\left(x_{0}, y_{0}\right)$. Then the change

$$
\Delta z=f\left(x_{0}+\Delta x, y_{0}+\Delta y\right)-f\left(x_{0}, y_{0}\right)
$$

in the value of f that results from moving from $\left(x_{0}, y_{0}\right)$ to another point $\left(x_{0}+\Delta x, y_{0}+\Delta y\right)$ in R satisfies an equation of the form

$$
\Delta z=f_{x}\left(x_{0}, y_{0}\right) \Delta x+f_{y}\left(x_{0}, y_{0}\right) \Delta y+\epsilon_{1} \Delta x+\epsilon_{2} \Delta y
$$

in which each of $\epsilon_{1}, \epsilon_{2} \rightarrow 0$ as both $\Delta x, \Delta y \rightarrow 0$.

COROLLARY OF THEOREM 3 If the partial derivatives f_{x} and f_{y} of a function $f(x, y)$ are continuous throughout an open region R, then f is differentiable at every point of R.
for sing it ing

THEOREM 4-Differentiability Implies Continuity If a function $f(x, y)$ is differentiable at $\left(x_{0}, y_{0}\right)$, then f is continuous at $\left(x_{0}, y_{0}\right)$.

Note Ex 8 pase 769
Exercise 91 page 775
if $f(x, y)=\left\{\begin{array}{cc}\frac{x y^{2}}{x^{2}+y^{4}} & (x, y) \neq 0 \\ 0 & (x, y)=(0,0)\end{array}\right.$
Show $f_{x}(0,0) \& f_{y}(0,0)$ exist but f is not Niferentidble at $(0,0)$ is we show 't is Not continnons than it is not different
we we the def of f_{x} and f_{y} sima the function is difined differently arownit $(0,0)$.

$$
\begin{aligned}
& \left.f_{x}\right|_{(0,0)}=\lim _{h \rightarrow 0} \frac{f(0+h, 0)-f(0,0)}{h}=\lim _{h \rightarrow 0} \frac{f(h \rho)-0}{h}=\lim _{h \rightarrow 0} \frac{0-0}{h}=0 \\
& \left.f_{y}\right|_{(0,0)}=\lim _{h \rightarrow-} \frac{f(0,0+h)-f(0,0)}{h}=\lim _{h \rightarrow 0} \frac{f(0, h)-0}{h}=0
\end{aligned}
$$

 \therefore Not continuow nt $(9,0) \Rightarrow$ Not differempichle at $(0,0)$ Tharu4 even though $f_{2}(0,0) \& f_{b}(0,0)$ exists

14.3 Exercises

1) $f(x, y)=\frac{x+y}{x y-1}$

$$
\frac{\partial f}{\partial x}=\frac{1(x y-1)-y(x+y)}{(x y-1)^{2}} \quad \frac{\partial f}{\partial y}=\frac{1(x y+1)-x(x+y)}{(x y-1)^{2}}
$$

19) $f(x, y)=x^{y}$

$$
\frac{\partial f}{\partial x}=y x^{y-1} \quad \frac{\partial f}{\partial y}=x^{y} \ln x
$$

26) $f(x, y, z)=\left(x^{2}+y^{2}+z^{2}\right)^{-\frac{1}{2}}$

$$
\begin{aligned}
& f_{x}=-\frac{1}{2}\left(x^{2}+y^{2}+z^{2}\right)^{-3 / 2} 2 x \\
& f_{y}=\text { dy } z \\
& f_{z}==\text { mexty }
\end{aligned}
$$

3)

$$
\begin{aligned}
& f_{x}=y z \frac{y}{x y} \quad f_{y}=1 z \ln x y+y\left(z \frac{x}{x y}\right) \\
& f_{z}=y \ln x y
\end{aligned}
$$

34) $f(x, y, z)=\sinh \left(x y-z^{2}\right)$

$$
\begin{aligned}
& f_{x}=\cosh \left(x y-z^{2}\right) y \\
& f_{y}=\cosh \left(x y-z^{2}\right) x \\
& f_{z}=\cosh \left(x y-z^{2}\right) 2 z
\end{aligned}
$$

46)

$$
\begin{aligned}
& \text { 16) } S(x, y)=\tan ^{-1} \frac{y}{x} \\
& S_{x}=\frac{1}{1+\left(\frac{y}{x}\right)^{2}}\left(\frac{-y}{x^{2}}\right)=\frac{-y}{x^{2}+y^{2}}=-y\left(x^{2}+y^{2}\right)^{-1} \\
& S_{y}=\frac{1}{1+\left(\frac{y}{x}\right)^{2}} \frac{1}{x}=\frac{1}{x+\frac{y^{2}}{x}}=\frac{x}{x^{2}+y^{2}}=x\left(x^{2}+y^{-1}\right)^{-1} \\
& S_{x x}=y\left(x^{2}+y^{2}\right)^{-2} 2 x \\
& S_{y y}=-x\left(x^{2}+y^{-2}\right)^{-2} 2 y \\
& S_{x y}=-1\left(x^{2}+y^{2}\right)^{-1}+-y\left(-1\left(x^{2}+y^{2}\right)^{-2} 2 y\right) \\
& S_{y x}=1\left(x^{2}+y^{2}\right)^{-1}+x\left(-1\left(x^{2}+y^{-2}\right)^{2} 2 x\right)
\end{aligned}
$$

$$
\begin{aligned}
S_{x y} & =\frac{-1}{x^{2}+y^{2}}+\frac{2 y^{2}}{\left(x^{2}+y^{2}\right)^{2}}=\frac{-1\left(x^{2}+y^{2}\right)+2 y^{2}}{\left(x^{2}+y^{2}\right)^{2}} \\
& =\frac{y^{2}-x^{2}}{\left(x^{2}+y^{2}\right)^{2}} \\
S_{y x} & =\frac{1}{x^{2}+y^{2}}-\frac{2 x^{2}}{\left(x^{2}+y^{2}\right)^{2}}=\frac{x^{2}+y^{2}-2 x^{2}}{\left(x^{2}+y^{2}\right)^{2}} \\
& =\frac{y^{2}-x^{2}}{\left(x^{2}+y\right)^{2}}
\end{aligned}
$$

54) $\omega=x \sin y+y \sin x+x y$

$$
\begin{aligned}
& w_{x}=\sin y+y \cos x+y \\
& w_{x y}=\cos y+\cos x+1 \\
& w_{y}=x \cos y+\sin x+x \\
& w_{y x}=\cos y+\cos x+1
\end{aligned}
$$

$$
\begin{aligned}
& \text { 58) } f(x, y)=4+2 x-3 y-x y^{2} \quad \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \text { at }(-2,1) \\
& \left.\frac{\partial f}{\partial x}\right|_{(-2,1)}=\lim _{h \rightarrow 0} \frac{f(-2+h, 1)-f(-2,1)}{h} \\
& =\lim _{h \rightarrow 0} \frac{4+2(-2+h)-3(1)-(-2+h)(1)^{2}-\left[4+2(-2)-3(1)--2(1)^{2}\right]}{h} \\
& =\lim _{h \rightarrow 0} \frac{\frac{-3+2 h+2-h+1}{h}=1}{}
\end{aligned}
$$

Check $\frac{\partial f}{\partial x}=2-\left.y^{2} \Rightarrow \frac{\partial f}{\partial x}\right|_{(-2,1)}=2-1=1$

$$
\begin{aligned}
& \begin{aligned}
\left.\frac{\partial f}{\partial y} \right\rvert\,= & \lim _{h \rightarrow 0} \frac{f(-2,1+h)-f(-3,1)}{h} \\
& =\lim _{h \rightarrow 0} \frac{4+2(-2)-3(1+h)-2(1+h)^{2}--1}{h} \\
& =\lim _{h \rightarrow 0}>3-\frac{-5 h}{} \frac{2+2+4 h^{h}+2 h^{2}+1}{h}=1 \\
f_{y}= & -3-2 x y \quad f_{y}(-2,1)=-3-2(-2) 1=1
\end{aligned}
\end{aligned}
$$

$61 f(x, y)=2 x+3 y+4 \quad(2,-1)$
a)

$$
\begin{aligned}
& \frac{\partial f}{\partial y}=\left.3 \quad \frac{\partial f}{\partial y}\right|_{(2,-1)}=3 \\
& \frac{\partial f}{\partial x}=\left.2 \quad \frac{\partial f}{\partial y}\right|_{(2,-1)}=2
\end{aligned}
$$

(6) $x z+y \ln x-x^{2}+4=0 \quad x=f(y, z)$
hard to solm for x.

$$
\begin{aligned}
& \frac{\partial x}{\partial z} z+x+y \frac{\frac{\partial x}{\partial z}}{x}-2 x \frac{\partial x}{\partial z} \times 0=0 \\
& \frac{\partial x}{\partial z}=\left.\frac{-x}{\left(z+\frac{y}{x}-2 x\right)} \Rightarrow \frac{\partial x}{\partial z}\right|_{(1,-1,-3)}=\frac{-1}{\left(-3+\frac{1}{1}-2(1)\right.}=\frac{1}{6}
\end{aligned}
$$

$75) f(x, y)=e^{-2 y} \cos 2 x$

$$
\begin{aligned}
& \frac{\partial f}{\partial x}=e^{-2 y} \cos 2 x \alpha \quad \frac{\partial f}{\partial y}=e^{-2 y}(-2) \cos 2 x \\
& \frac{\partial f}{\partial x}+\frac{\partial f}{\partial y}=0
\end{aligned}
$$

91) $f(x, y)=\left\{\begin{array}{cl}\frac{x y^{2}}{x^{2}+y^{4}} & (x, y) \neq(0,0) \\ 0 & (x, y)=(0,0)\end{array}\right.$

$$
f_{x}=\frac{y^{2}\left(x+y^{4}\right)-2 x\left(x y^{2}\right)}{\left(x^{2}+y^{2}\right)^{2}} \text { this is parted } x \text { for }(x, y)
$$

Since f is difined differently around $(0,0)$ we need to use the definition.

$$
\begin{aligned}
& \left.f_{x}\right|_{(0,0)}=\operatorname{Lim}_{h \rightarrow 0} \frac{f(0+h, 0)-f(0,0)}{h}=\operatorname{Lim}_{h \rightarrow 0} \frac{0-0}{h}=0 \\
& f_{0}(0,0)=\lim _{h \rightarrow 0} \frac{f(0,0+h)-f(0,0)}{h}=0
\end{aligned}
$$

$\lim _{\theta \rightarrow(0,0)} \frac{\left.a y^{4}\right)}{\left(a^{2}+1\right) y^{4}}=\frac{a}{a^{2}+1}$ which is different for different gath
Mong $x=a y^{2} \Rightarrow$ Not continuow at $(0,0) \Rightarrow$ Not differentia) $\quad \Rightarrow$ even though f_{x}, f_{y} exists at $(0,0)$

14.4 The chain Rule

If $w=f(x) \quad x=f(t)$, then

$$
\begin{aligned}
& \quad \frac{d w}{d t}=\frac{d w}{d x} \frac{d x}{d t} \text { chain rule for single variable } \\
& w=f(x(t))=\frac{d w}{d t}=f^{\prime}(x) x^{\prime}(t)
\end{aligned}
$$

for functions of severe variables the chain rule Works the same but it has many forms degennling on the variables involved
If $\omega=f(x, y) \quad x=x(t) \quad y=y(t)$ is differentiable
Then $\Delta w=f_{x} \Delta x+f_{y} \Delta y+\varepsilon_{1} \Delta_{x}+\varepsilon_{2} \Delta y$

$$
\begin{aligned}
& \varepsilon_{1} \& \varepsilon_{2} \rightarrow 0 \text { a } \Delta x \& \Delta y \rightarrow 0 \\
\Rightarrow & \frac{\Delta w}{\Delta t}=f_{x} \frac{\Delta x}{\Delta t}+f_{y} \frac{\Delta y}{\Delta t}+\varepsilon_{1} \frac{\Delta x}{\Delta t}+\varepsilon_{2} \frac{\Delta y}{\Delta t}
\end{aligned}
$$

Letting $\Delta t \rightarrow 0\left(\lim _{\Delta \rightarrow \rightarrow 0}\right.$ for both sides $) \Rightarrow$

$$
\frac{d w}{d t}=f_{x} \frac{d x}{d t}+f_{y} \frac{d y}{d t}+0 \cdot \frac{d x}{d t}+0 \cdot \frac{d y}{d t}
$$

When $W=f(x, y) \quad x=x(t) \quad y=y(t)$ t is the indegendet Variables
x \& y are intermediate variable

$$
\frac{d w}{d t}=\frac{\partial w}{\partial x} \frac{d x}{d t}+\frac{\partial w}{\partial y} \frac{d y}{d t}
$$

$E x 1$ page $794 \quad w=x y \quad x=\cos t \quad y=\sin t$

$$
\text { find }\left.\frac{d w}{d t}\right|_{t=\pi / 2}
$$

Note we can rewrite W as $W=\cos t \sin t$ and use product rule to find $\frac{d w}{d t}$
Using Chain Ruth

$$
\begin{aligned}
& \frac{d w}{d t}=W_{x} \frac{d x}{d t}+W_{y} \frac{d y}{d t}=y(-\sin t)+x \cos t \\
& =\sin t\left(-\sin t+\cos t \cos t=-\sin ^{2} t+\cos ^{2} t\right. \\
& \left.\frac{d w}{d t}\right|_{\frac{a}{2}}=-1^{2}+0^{2}=-1
\end{aligned}
$$

Similarly for $W=f(x, y, z) \quad x=x(t) \quad y=y(t) \quad z=z(t)$
Ex 2 fry 795

$$
w=x y+z \quad x=\cos t \quad y=\sin t \quad z=t
$$

Again we can rewrite w as $W(t)$ with ont the intermediate Variables.

$$
\begin{aligned}
\frac{d W}{d t} & =W_{x} \frac{d x}{d t}+W_{y} \frac{d y}{d t}+W_{z} \frac{d z}{d t} \\
& =y\left(-\sin ^{2} t\right)+x(\cos t)+1(1) \\
& =-\sin ^{2} t+\cos ^{2} t+1 \\
\left.\frac{d W}{d t}\right|_{t=0} & =0+1^{2}+1=2
\end{aligned}
$$

What If $\quad W=f(x, y, z) \quad x=x(r, s) \quad y=y(r, s) \quad z=z(r, s)$
Two inlegentent variables
Here W changes partid (by chang in r, and by change in s)

$$
\frac{\partial w}{\partial r}=\frac{\partial w}{\partial x} \frac{\partial x}{\partial r}+\frac{\partial w}{\partial y} \frac{\partial y}{\partial r}+\frac{\partial w}{\partial z} \frac{\partial z}{\partial r}
$$

Note it is tempting to cancel ($\frac{\partial w}{x^{2}} \frac{\partial z}{\partial r}$) parties are not lithe d Similarly for $\frac{\partial W}{\partial S}$

Ex 3, Ex 4 pages $796+797$
Three intermediate
for one intermediate

$$
W=f(x) \quad x=x(r, s)
$$

for $\frac{\partial W}{\partial r}$ for $\frac{\partial w}{\partial S}$
Note: we ran rewrite
 ω as $w=f(r, s)$

$$
\begin{aligned}
& E x \quad w=3 r s-\sin (r s) \\
& w=3 x-\sin (x) \quad \text { m dx } x=r s \\
& \frac{\partial w}{\partial r}=\frac{d w}{\partial x} \frac{\partial x}{\partial r}=(3-\cos (x)) s=3 s-\cos (r s) s
\end{aligned}
$$

We can use the chain rule for Implicit differentiation
Ex 5 page 798
Find $\frac{d y}{d x}$ if $y^{2}-x^{2}=\sin (x y)$
without chain rule $2 y y^{\prime}-2 x=\cos (x y)\left(y+y^{\prime} x\right)$
using Chain rube

$$
\begin{aligned}
& y^{\prime}(2 y-x \cos (x y))=y \cos (x, y)+2 x \\
& y^{\prime}=\frac{y \cos (x y)+2 x}{2 y-x \cos (x y)}
\end{aligned}
$$

rewrite as $F(x, y)=0$ so

$$
\begin{aligned}
& \frac{d f}{d x}=0=F_{x} \frac{d x}{d x}+F_{y} \frac{d y}{d x} \\
\Rightarrow & \frac{d y}{d x}=\frac{-F_{x}}{F_{y}} \quad F_{x} \neq 0 \quad f
\end{aligned}
$$

$$
\begin{aligned}
& f(x, y)=y^{2}-x^{2}-\sin (x y)=0 \\
& \frac{d y}{y_{\alpha}}=-\frac{(-2 x-\cos (x 0) y)}{2 y-\cos (x y) x}
\end{aligned}
$$

Same answer

14.5 Directional Derivatives and Gradient Vector
When me learned $\frac{\partial f}{\partial x} \& \frac{\partial f}{\partial y}$ we fixed

$\frac{\partial f}{\partial x}$ was th slope at the curve on the surface traced by the plane $y=y$ 。
So it is the rate of change in f in the direction of $\langle 1,0\rangle$ (parallel to the x-axis) hence $\frac{\partial t}{\partial x}$
What it we want the rate of change in f Dx in the direction $\left\langle u_{1}, u_{2}\right\rangle$

Ex if $f(x, y)=x^{2}+x y$ find the dervative at $p_{0}(1,2)$ in the direction of
a) $u=j=\langle 0,1\rangle$ Note y-direct ion $\Rightarrow x$ is fined $\left(\frac{\partial f}{\partial y}\right)$
b) $u=\left\langle\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right\rangle$
a)

$$
\begin{aligned}
& \left(\frac{\partial f}{\partial s}\right)_{u, \beta_{0}}=\operatorname{Lim}_{s \rightarrow 0} \frac{f(1+s(0), 2+s(1))-\dot{f}(1,2)}{s} \\
& =\operatorname{Lim}_{s \rightarrow 0} \frac{1^{2}+1(2+s)-\left[1^{2}+\mid(2)\right]}{s} \\
& \left.=\lim _{s \rightarrow 0} \frac{3+s-3}{s}=1 \frac{\partial f}{\partial y}=x \Rightarrow \frac{\partial^{t}}{\partial y} \right\rvert\,=1
\end{aligned}
$$

b) $\left(\frac{\partial f}{\partial s}\right)_{u_{p_{0}}}=\lim _{s \rightarrow 0} \frac{f\left(1+s \frac{1}{\sqrt{2}}, 2+s \frac{1}{\sqrt{2}}\right)-f(1,2)}{s}$

$$
=\lim _{s \rightarrow 0} \frac{\frac{s}{\sqrt{2}} s+s^{2}}{s}=\frac{5}{\sqrt{2}} \approx 3.5
$$

the rate of change of f at $(1,2)$ in the diration of $\left\langle\frac{1}{\sqrt{a}}, \frac{1}{\sqrt{2}}\right\rangle$ is $\frac{5}{\sqrt{2}}$ grows fasten in this direction than

How to find directional derivative without limits.
A long the direction $u=\left\langle u_{1}, u_{2}\right\rangle$ unit vector

$$
\begin{aligned}
& x=x_{0}+s u_{1} \\
& y=y_{0}+s u_{2} \\
& f(x, y)=f(s) \\
& \Rightarrow \frac{d f}{d s}=\frac{\partial f}{\partial x} \frac{d x}{d s}+\frac{\partial f}{\partial y} \frac{d y}{d s} i_{i}^{a} c^{a} c^{a} C_{n} \\
& =\frac{\partial f}{\partial x} u_{1}+\frac{\partial f}{\partial y} u_{L} \quad{ }^{\text {in }}{ }^{\text {ix }}{ }_{{ }^{{ }_{n}}} q \\
& =\left\langle\frac{\partial f}{\partial x} \frac{\partial f}{\partial y}\right\rangle \cdot\left\langle u_{1}, u_{2}\right\rangle \\
& \left(\frac{d f}{d s}\right)_{u \cdot \rho_{0}}=\nabla f_{p_{0}} \cdot u \quad \nabla f \text { is the Gradient }
\end{aligned}
$$

$E_{x} 2$ page $786 \quad f(x, y)=x e^{y}+\cos (x y)$ Find the derirative at $(2,0)$ in the direction of $v=3 i-4 j$

$$
\begin{aligned}
& \frac{d f}{\sqrt{1}}=\nabla f \cdot u \quad u=\left\langle\frac{3}{5}-\frac{4}{5}\right\rangle \\
& \nabla f=\left\langle e^{y}+-\sin (x y) y, x e^{y}-\sin (x y) x\right\rangle \\
& \left.\nabla f\right|_{(2,0)}=\langle 1-0,2-0\rangle=\langle 1,2\rangle \\
& \frac{d f}{d s}=\langle 1,2\rangle \cdot\left\langle\frac{3}{5}, \frac{4}{5}\right\rangle=\frac{3}{5}-\frac{\delta}{5}=\frac{-5}{5}=-1
\end{aligned}
$$

Properties of $D_{n} f=\nabla f \cdot u \quad$ Pag 787

$$
\begin{aligned}
\nabla f \cdot u & =|\nabla f| \cdot|u| \cos \theta \\
& =|\nabla f| \cos \theta
\end{aligned}
$$

1)..
2)…
3) $\cdots \Rightarrow \nabla f$ is perpendicalar fo th le hels ($\left.\begin{array}{c}\text { (arvered } \\ \text { sufdee }\end{array}\right)$ (tanments of levels)

Ex 3 page 787 for

$$
f(x, y)=\frac{x^{2}}{2}+\frac{y^{2}}{2}
$$

a) direction in which f increases most ragially
b) $==2=$ decreases $=$
$c)=$ of Zero change (perpenindicular to ∇ / f)
you can always find Normal to a rector $V=\left\langle V_{1}, V_{2}\right\rangle$

$$
\begin{aligned}
& \left\langle v_{1}, v_{2}\right\rangle \cdot\left\langle u_{1}, u_{2}\right\rangle=0 \Rightarrow v_{1} u_{1}+v_{2} u_{2}=0 \Rightarrow u_{i}=\langle 0,0\rangle \\
& \Rightarrow v_{1} u_{1}=-v_{2} u_{2} \quad \text { Let } u_{1}=1 \Rightarrow u_{2}=\frac{v_{1}}{v_{2}} \quad u_{\text {se less }}
\end{aligned}
$$

\therefore a Unit Normal is $\frac{\left\langle 1,-\frac{V_{2}}{V_{1}}\right\rangle}{\sqrt{1+\frac{v_{2}^{2}}{V_{1}^{2}}}}$
Ex 4 page 788
en of tangent to the ellipse $\frac{x^{2}}{4}+y^{2}=2$
 at $(-2,1)$

Usual Way $y= \pm \sqrt{2-\frac{x^{2}}{4}}$

$$
\left.y^{\prime}\right|_{(-2,1)}=\frac{-1}{4}(-2)(2-1)^{-\frac{1}{2}}=+\frac{1}{2}
$$

$$
y^{\prime}=\frac{1}{2}\left(\frac{2-x^{2}}{4}\right)^{-\frac{1}{2}}\left(\frac{1}{2} x\right)
$$

tangent Line $y-1=\frac{1}{2}(x-2)$

$$
y=\frac{1}{2} x+2
$$

Gradient way

$\frac{x^{2}}{4}+y^{2}=2$ is a level carne

$$
\text { of } f(x, y)=\frac{x^{2}}{4}+y^{2}
$$

$$
\begin{gathered}
\nabla f=\left\langle\frac{1}{2} x, 2 y\right\rangle \\
\nabla f \mid=\langle-1
\end{gathered}
$$

$\left.\nabla f\right|_{(-2,1)}=\langle-1,2\rangle \quad$ tansent is Noma ${ }^{\prime}$ to ∇f
A Normal to $\nabla f=\langle-1,2\rangle$ is $\left\langle 1, \frac{-1}{2}\right\rangle=\left\langle 1, \frac{1}{2}\right\rangle$
direction of tangent is $\left\langle 1, \frac{1}{2}\right\rangle$ doss not have to be Unit point is $(-2,1) \quad \therefore$ tangent line is $x=-2+1 t$

$$
\begin{gathered}
t=x+2 \rightarrow y=1+\frac{1}{2}(x+2) \\
y=\frac{1}{2} x+2
\end{gathered}
$$

Now Posit out Exercise 39 and ign 6 pase 788

Note Rules os ∇f Page 789 Ex 5 Page 789

Note extension to $f(x, y, z)$ and do Ex 6 pay 790
14.6 Tangent p lanes and Differentials

$$
\begin{aligned}
& z=f(x, y) \text { is a Level surface for } \\
& f(x, y, z) \text { which is } f(x, y, z)=c \\
& \text { Suppose } r=g(t) i+h(t) j+K(t) K \text { is }
\end{aligned}
$$ a carne on the surface, then

$$
\begin{gathered}
f\left(g^{(g(t), h(t), k(t))}=c\right. \\
\frac{d}{\partial t}(\lambda)=\frac{d}{d t}(c) \\
\frac{\partial f}{\partial x} \frac{d g}{d t}+\frac{\partial f}{\partial y} \frac{d h}{d t}+\frac{\partial f}{\partial z} \frac{d K}{d t}=0 \\
\left\langle\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\right\rangle-\left\langle\frac{d g}{d t}, \frac{d h}{d t}, \frac{d K}{d t}\right\rangle=0 \\
\nabla f \cdot \frac{d r}{d t}=0 \quad \frac{d r}{d t}=V_{\text {eosity }}
\end{gathered}
$$

$\therefore \nabla f \cdot V=0 \Rightarrow \nabla f \ldots V$ at any point and V is the tangent to the curve no matter what r and hence the surface Therefor the lines tangent at p_{0} all Lies in the plane with Normal If) and point po

This plane is defined to be the tangent plane Definition of tangent plane page 810 rn,
Do Ex 1 page 792
$E_{x} 2$ page 793

Ex 3 Page 793

Estimating change in a specific direction

If we change the domain by moving a distance $s=$ as from. B. in the direction of n, then the exact change in $f, \Delta f=\left|f\left(x_{0}, y_{0}\right)-f\left(x_{\text {nu w }}, y_{\text {max }}\right)\right|$
Hominess we can find we can estimate the change

$$
\begin{array}{ll}
\quad \frac{d f}{d s}=\left.\nabla f\right|_{p .} \cdot u
\end{array} \Rightarrow d f=\left.\nabla f\right|_{\mid c} \cdot u d s \approx \Delta f
$$

Linearization of a function of Two variables in single Variable $L(x)=y_{ \pm} f^{\prime}(x)(x-x$.
 is the tangent line $f(x) \approx L(x)$
in $z=f(x, y)$ the Linearization is the thangent plane

$$
\begin{aligned}
& y-y_{0}=f^{\prime}(x)\left(x-x_{0}\right) \\
& y=y_{0}+f^{\prime}(x)\left(x-x_{0}\right) \\
& L(x)=y_{0}+f^{\prime}(x)\left(x-x_{0}\right)
\end{aligned}
$$

$$
f(x, y) \approx L(x, y)
$$

$$
z \approx L(x, y)=f\left(x_{0}, y_{0}\right)+f_{x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+f_{y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right)
$$

Ex Linearize $z=f(x, y)=x \cos y-y e^{x}$ at $(0,0,0)$

$$
\begin{aligned}
& \quad L(x, y)=f\left(x_{0}, y_{0}\right)+f_{x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+f_{y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right) \\
& f\left(x_{0}, y_{0}\right)=0 \quad f_{x}=\cos y-y e^{x} \Rightarrow f_{x}(0,0)=1 \\
& \Rightarrow L(x, y)=0+1(x-0)+-1(y-0) \\
& \quad f_{y}=-x \sin y-e^{x} \Rightarrow f_{0}(0,0)=-1 \\
& L(x, y)=x-y
\end{aligned}
$$

Note Ex the plane tangent wan $x-y-z=0$ $\Rightarrow z=x-y$ Which is $E x 5$ page 813

The error in standard linear Approximation.

if f has a continuous 1st and 2 ni partial derivatives in an open set containing a rectangular region R centered at $\left(x_{0,}, y_{0}\right)$
Then

$$
|E(x, y)| \leqslant \frac{1}{2} M\left(\left|x-x_{0}\right|+\left|y-y_{0}\right|\right)^{2}
$$

Where
$E(x, y)$ is the error of wing $L(x, y)$ to Approximate $f(x, y)$ and M is an upper bound for $\left|f_{x x}\right|,\left|f_{y s}\right|$, and $\left|f_{x y}\right|$ on R
$E \times 6$ page 796
total differential of f
We saw (Theorem 3 section 14.3) that if $f(x, y)$ is differentiable then $\Delta f=f_{x}\left(x_{0}, y_{2}\right) \Delta x+f_{y}\left(x_{0}, \Delta\right) \Delta y+\varepsilon \Delta x+\varepsilon \Delta$

$$
\varepsilon_{1}, \varepsilon_{2} \rightarrow 0 \infty \Delta x \& \Delta y \rightarrow 0
$$

$$
\begin{aligned}
& L(x, y)=f\left(x_{0}, y_{0}\right)+f\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+f_{y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right) \\
& \text { if we change } x \text { a little bit say }
\end{aligned}
$$

if we change x a little bit say from $x_{0}+x_{0}+d x$
and y from $y_{0} t_{0} y_{0}+d x$ then the change in the linearization
is

$$
\Delta=L(x+d x, y+d y)-L\left(x_{0}, y_{0}\right)=f_{x}\left(x_{0}, y_{0}\right) d x+f_{y}(x, y) d y
$$

$\Delta L \approx \Delta f \Delta L$ is called the total differential and it is denoted by $d f=f_{x} d x+f_{y} d y$

Ex 7 page $815\left(\begin{array}{l}\text { do exact change } \\ \left.\pi 1^{2}(5)-\pi c_{2}\right)^{2}(4)\end{array}\right.$ Ex 8 Page 815
$E_{x} 9$ Page 816
All of the a bone is extended to f of more than two Variables (Linearization, Error, \& diffirentidil)
Ex 10
Note Region for Error is parallel Sides

14.7 Extreme values and Saddle points

Definitions: if $f(x, y)$ is defined on R containing (a, b) then

1) $f(a, b)$ is a local max if $f(a, b) \geqslant f(x, y)$ for all points (x, y) in an open disk centered $a t(a, b)$
2) $f(a, b)$ is a local min if $f(a, b) \leqslant f(x, y)$ for all points (x, y) in an open disk centered $a t(a, b)$
3) $f(a, b)$ is a saddle point if for every open disk centre at (a, b), there ave points (x, y) where $f(a, b) \geqslant f(x, y)$ and the points (x, y) when $f(a, b) \leqslant f(x, y)$.
graph $z=x^{2}+y^{2} \quad z=-x^{2}-y^{2} \quad z=x^{2}-y^{2}$
Note Theorem 10

if $f(a, a)$ is Max then
$f(x, b)$ has a max at $x=a$

$$
\Rightarrow f_{x}(a, b)=0
$$

and $f(a, y)$ has a max at $y=b$

$$
\Rightarrow f_{y}(a, b)=0
$$

Similarly if $f(a, b)$ is a min or a Saddle

Def An interior point (a, b) is a Critical Point if $f_{x}(a, b)$ and $f_{y}(a, b)$ are zero or one or both do not exists
\therefore Theorem $10 \Rightarrow$ Extram and saddle only occur at Critiod Points

Ex $f(x, y)=x^{2}+y^{2}-4 y+9$ find load Extrema $f_{x}=2 x \quad f_{y}=2 y-4 \quad$ for Critided point $\left\{\begin{array}{l}2 x=0 \\ 2 y-4=0\end{array}\right.$

$$
\left.\Rightarrow x=0 \quad y=2 \quad \text { in C.Pis }(0,2) \quad \begin{array}{ll}
\text { Max } \\
\text { Min } \\
\text { Sane }
\end{array}\right\} ?
$$

$$
f(0,2)=5 \xrightarrow[\longrightarrow]{\rightarrow} \operatorname{man} \operatorname{san} \min _{2},
$$

We will lear a test shortly but

$$
\begin{aligned}
f(x, y) & =x^{2}+y^{2}-4 y+4^{9}+5 \text { complete the square } \\
& =x^{2}+(y-2)^{2}+5
\end{aligned}
$$

We Note that both squares hans a smallest value of zero \therefore Minimum is 5 in this exangreit is $g b_{0}$
Since we have min $a t(0,2)$ then ψ Aby

$$
f(x, 2)=x^{2}+4-8+9=x^{2}+5
$$

Theorem 11. Second derivative test for Local extreme Values. Pare 805
Test: find the discriminant $\left|\begin{array}{l}f_{x x} f_{x} \\ f_{x y} \\ f_{y y}\end{array}\right|$

$$
D=f_{x x} f_{y y}-\underbrace{f_{x y y} f_{y x}}_{s_{a m 2}} \text { at } G_{x \cdot} \cdot f_{x y}
$$

if $D>0$ then all curves in all directions at crop

1) curve down ard if $f_{x \times 3}<0 \Rightarrow M_{\text {ace }}$
2) Corm \mathbb{W} gerard if $f_{m y}>0 \Rightarrow \mathrm{Min}$
if $D<0$ then some curry down and sum up \Rightarrow Saddle
if $D=0$ Can't conclude

Why is this so??

Consider the Class of the functions

$$
\begin{aligned}
& Z=a x^{2}+b x y+c y^{2}=a\left(x^{2}+\frac{b}{a} x y\right)+c y^{2} \\
& =a\left(x^{2}+\frac{b}{a} x y+\left(\frac{1}{2} \frac{b}{a} y^{2}-\left(\frac{1}{2} \frac{b}{a} y^{2}\right)+c y^{2}\right.\right. \\
& =a\left(\left(x+\frac{b y}{2 a}\right)^{2}-\left(\frac{1}{2} \frac{b}{a} y\right)^{2}\right)+c y^{2} \\
& =a\left(x+\frac{b y}{2 a}\right)^{2}+-\frac{a}{2} \frac{b^{2} y^{2}}{4 a^{2}}+c y^{2} \\
& =a\left(x+\frac{b y}{2 a}\right)^{2}+\left(c-\frac{b^{2}}{4 a}\right) y^{2} \\
& =a\left(x+\frac{b y}{2 a}\right)^{2}+\frac{4 a c-b^{2}}{4 a} y^{2} \\
& z_{x}=2 a x+b y \quad z_{y}=2 c y+b x \\
& z_{x x}=2 a \quad \quad z_{y y}=2 c \\
& z_{x y}=b \quad \quad z_{y x}=b
\end{aligned}
$$

if $4 a c-b^{2}>0 \Rightarrow\left\{\begin{array}{l}\text { if } a>0 \text { or } c>0 \Rightarrow \text { Min } \\ \text { if sing } a<k i n g \\ \text { in or cc o }\end{array} \Rightarrow\right.$ Max if $4 a c-b^{2}<0 \Rightarrow$ one term position th ot han is negative \Rightarrow 的 if $4 a c-b^{2}=0 \Rightarrow$ degantrat term need further examination.
Why is this true in gamed Taplors App

$$
\begin{array}{r}
\operatorname{sic} z=x^{2}+y^{2} \\
z=x^{2}-y^{2}
\end{array}
$$

$$
\Delta f \approx f_{x} \Delta x+f_{y} \Delta y+\frac{1}{2} f_{x x}(\Delta x)^{2}+f_{x y} \Delta x \Delta y+\frac{1}{2} f_{2 y}(\Delta y)^{2}=z=x^{2}
$$

Eve- at critiod

$$
\begin{aligned}
& E \times 3 \text { page } 805 \\
& \text { Ex 4 page } 805
\end{aligned}
$$

Absoulate Maxima and Minima on closed Bounded region.
in single Var. for
 we dort know what he the Local extrema are global (absolute). furthn analysis's is needed
bot for a function on closed interval $[a, b]$
Wi There is a min ant a max either at C.Ps or at a and b
Same with $Z=f(x, y)$
Rad 3 steps pare 806
Ex 5 page 806
Finding Extrema under constraints
Ex 6 pase 807

$$
\text { girth }=2 y+2 z
$$

constraint is $x+2 y+2 z=108$
Maximiz $V=x y z$
Use substitution $z=54-y-\frac{1}{2} x$

$$
\begin{aligned}
\Rightarrow V & =f(x, y)=x y\left(54-y-\frac{1}{2} x\right) \\
& =54 x y-x y^{2}-\frac{1}{2} x^{2} y
\end{aligned}
$$

$$
f_{x}=54 y-y^{2}-y x^{2} \quad f_{x}=-
$$

$$
f_{x y}=54-2 y-x
$$

$$
f_{y}=54 x-2 x y-\frac{1}{2} x^{2} \quad f_{y y}=-2 x \quad f_{y x}=54-2 y-x
$$

$$
\left\{\begin{array}{l}
54 y-y^{2}-y x=0 \\
54 x-2 x y-\frac{1}{2} x^{2}=0
\end{array}\right.
$$

$$
\left\{\begin{array}{l}
54-y-x=0 \ldots(1) \Rightarrow y=54-x \\
54 y-2 x y-\frac{1}{2} x^{2}=0 \cdots(1)
\end{array} \quad \Rightarrow 4 x-2 .\right.
$$

$$
\begin{aligned}
& 54 x-108 x+2 x^{2}-\frac{1}{2} x^{2}=0 \\
& -54 x+\frac{3}{2} x^{2}=0 \\
& x^{2}-36 x=0 \\
& x(x-36)=0 \\
& x=0 x=36 \\
& (36,18) \\
& (0,54)
\end{aligned}
$$

$$
\begin{aligned}
\Rightarrow y=54-36 & =18 \\
\text { or } y=54-0 & =54
\end{aligned}
$$

$$
V(36,18)=1 \backslash 6.64
$$

Solving Extreme problems with constraint using substitution does not all ways comes neth,
never the less What it we cant express one of the variables in terms af the other using constrit $f(x, y, z) \quad$ contrail $\sin (x)=\ln y \tan ^{-1}(z)$ 148 Lagrange multipliers
H. 8 Lagrange Multipliers

It is used to solve extrema problems with constraint Since substitution oboes not allay give correct conclusion and som times can't solve one variable for the others
Ex 2 find the closest point on the cylinder $x^{2}-z^{2}-1=0$ to the origion

$$
\begin{aligned}
& d=\sqrt{(x-0)^{2}+(y-0)^{2}+(z-0)^{2}} \\
& d=f(x, y, z)=\sqrt{x^{2}+y^{2}+z^{2}}
\end{aligned}
$$

$$
\text { Mininiz dor } d^{2} \text { subject to }
$$

call $d^{2} f(x, y, z)=x^{2}+y^{2}+z^{2} \quad x^{2}-z^{2}-1=0$ (constraint)
Let us try the substitution $Z^{2}=x^{2}-1$

$$
\begin{aligned}
& \Rightarrow f=x^{2}+y^{2}+x^{2}-1=2 x^{2}+y^{2}-1 \\
& \frac{\partial f}{\partial x}=4 x \quad \frac{\partial f}{\partial y}=2 y \quad\left\{\begin{array}{l}
4 x=0 \\
2 y=0
\end{array} \Rightarrow C r . g t i s(0,0)\right. \\
& D>0 \text { and } h_{x x}=4>0 \Rightarrow \operatorname{Min} \text { at }(0,0) \Rightarrow \operatorname{Min} h=0+0-1
\end{aligned}
$$

What is wrong with $(0,0)$ it is in the Domain of f but not on the cylinder when $|x| \geqslant 1$

The method of lagrange multiplier pay 815 Ex 2 objective $f(x, y, z)=x^{2}+y^{2}+z^{2}$ constraint $x^{2}-z^{2}-1=0$

$$
g(x, y, z)=x^{2}-z^{2}-1=0
$$

find x, y, z, and λ for
Lagrazmuntiglier

$$
\nabla f=\lambda \nabla g \text { and } g(x, y, z)=0
$$ mither reduces the problem to

\rightarrow solution at system are $(1,0,0)$ and $(-1,0,0)$
$\therefore M_{\text {in at }}(1,0,0)_{0}^{2}$ and $\left(-{ }_{-1,0,0}\right)^{2}$ it of $f(1,0,0)=1$

$$
\begin{aligned}
& \text { Solving system } \\
& \text { of equation } \\
& \nabla f=\langle 2 x, 2 y, 2 z\rangle \\
& \nabla_{g}=\langle 2 x, 0,-2 z\rangle \\
& \langle 2 x, 2 y, 2 z\rangle=\lambda\langle 2 x, 0,-2 z\rangle \\
& \begin{cases}2 x=\lambda 2 x & \Rightarrow \lambda=1 \\
2 y=\lambda(0) & \Rightarrow y=0 \\
2 z=-\lambda 2 z & \Rightarrow \lambda=-1 \\
x^{2}-z^{2}-1=0 & \end{cases} \\
& \lambda=1 \\
& \lambda=-1 \\
& 2 x=2 x \Rightarrow x=x \\
& 2 x=-2 x \Rightarrow x=0 \\
& 2 z=2 z \Rightarrow z=z \\
& 2 z=-2 z \Rightarrow z=0 \\
& x^{2}-z^{2}-1=0 \\
& \begin{array}{l}
x^{2}-z^{2}-1=0 \text { Nosolution } \\
0-z^{2}-1=0 \text { Nos }
\end{array} \\
& x^{2}-0^{2}-1=0 \Rightarrow x= \pm 1
\end{aligned}
$$

Why this works
the Max/min of $f(x, y, z)$ under $g(x, y, z)=c$ Must be at the Level $g=c$ and rate of change of f in any direction a long Lind $g=c$
mast be 0
this means: for any direction U tangent to $g=c$ $\frac{d f}{d J}=0$

$$
\Rightarrow \nabla f \cdot u=0 \Rightarrow \nabla f \perp u
$$

So $\nabla f \perp$ to lend $g \quad b_{u} \quad \nabla g \perp$ lend g
$\therefore \nabla f / / \nabla g \Rightarrow \nabla / f=\lambda \nabla / g$
Notes: method does not tell whither a solution is a min or max!

Cant use second derivative test
To determin mim or max we need further examination such as comparing values of f at Various solutions to the equations

Ex 6 from 14.7 fage 807

pasies
Maximize $V=x y z$
subj at to $x+2 y+2 z=408$
Using subsfitution

$$
\begin{aligned}
& x=108-2 y-2 z \\
& V=(108-2 y-2 z) y z \\
& V=\operatorname{lof} y z-2 y^{2} z-2 y z^{2} \\
& f_{y}=108 z-4 y z-2 z^{2}=0 \quad(10 x-4 y-2 z)=0 \text { or } z=0 \\
& f_{z}=108 y-4 y z-2 y^{2}=0 \quad \text { or } \quad 4 z-2 y=0 \text { or } y=0 \\
& z=0, y=0 \quad(0, z) \\
& \log -4(0)-2 y=0 \quad y=54 \\
& (54,0) \\
& \log -4(0)-2 z=0 \Rightarrow z=54 \\
& (0,54) \\
& \left\{\begin{array}{l}
\log -4 y-2 z=0 \\
\log -4 z-2 y=0
\end{array} \Rightarrow y=18, z=18\right. \\
& \text { 2nd derinatim test }
\end{aligned}
$$ $D>0 \quad f_{\partial y}<0 \Rightarrow \operatorname{Max} V$ at $y=\psi, z=18 \Rightarrow x=36$

Using Lagrange method

$$
\delta f=\langle y z, x z, x y\rangle
$$

$$
\begin{aligned}
& f(x, y, z)=x y z \\
& g(x, y, z)=x+2 y+2 z-10 y=0
\end{aligned}
$$

$$
\nabla_{g}=\langle 1,2,2\rangle
$$

$$
\left\{\begin{array}{lc}
y z=\lambda \cdots 0 \\
x z=2 \lambda & \text { tong to solve manual } \\
x y=2 \lambda & \text { use maple }
\end{array}\right.
$$

$$
x y=22 \ldots
$$

$x+2 y+2 z-108=0 \ldots$...
use maple

$$
e_{q 4 i}^{i}=\cdots \cdot e
$$

$$
\text { Solve }\left(\left\{p_{y}, e 9 z, 4, e q u\right\},\{x, y, 7, y)\right]
$$

Note Max was at $(36,18,18) \Rightarrow \lambda=18(18)=324$

$$
\operatorname{Cf}(36,8,18) ?=32 \lambda \Gamma 99(36,18,18)
$$

$\langle 324,648,648\rangle=324\langle 1,2,2\rangle$
Ex 3 Page 815
Ex 4 Page 816
15.1+15.2 Double Integral

In single var fun $y=f(x)$ $\int_{a}^{b} f(x) d x$ represents area

negative Value

(if part of $f(x, y)$ in $R<0$ \Rightarrow negative value)

Formal definition

$$
\iint_{R} f(x, y) d A=\operatorname{Lim}_{\|\rho\| \rightarrow 0} \sum_{x=1}^{n} f\left(x_{k}, y_{k}\right) \Delta A_{k}
$$

the Volume of each column is $\approx f\left(x_{k}, y_{k}\right) \Delta A_{k}$
\therefore Volume one R is

$$
V \approx \sum_{k=1}^{M} f\left(x_{k} y_{k}\right) \Delta A_{k}
$$

As $\|P\| \rightarrow 0 \quad \Delta x \rightarrow d x, \Delta y_{k} \rightarrow d y \Rightarrow \Delta A_{k} \rightarrow d A$ and $f\left(x_{k}, y_{k}\right)$ $\therefore V=\iint_{R} f(x, y) d A \quad d A=d y d x$ or $d A=d x d y$

Ho to evaluate the double integral?
It is an Herated integral. We integrate twice, once with respect to x and once with respect to y determening the limits of integration.

There are two choices

(1) fix x and determin the Limits of y (if not constant, they will be fun of x) this gites the inner integral with respect to y (which is the area of the slice).
then integrate with respect to x from $X_{\text {min }}$ to $X_{\text {max }}$ (almaiss constant)
(2) fix y and determin the Limits of x (if not constant, they will be fun of y) this gives the inner integral with respect to x (which is the area of the slice).
then integrate with respect to y from $y_{\text {min }}$ to $y_{\text {max }}$ (always constant)
x Limits varies as a function af y

$$
\begin{aligned}
& =\int_{0}^{2} \int_{-1}^{1} 100-6 x^{2} y d y d x
\end{aligned}
$$

$$
\begin{aligned}
& =\int_{-1}^{1} \int_{0}^{-2} 100-6 x^{2} y d x d y
\end{aligned}
$$

$$
E_{x} 115 \cdot 2 \quad z=f(x, y)=3-x-y
$$

R bounded by x-axis, $y=x, x=1$

fix x

$$
=\int_{x=0}^{x=1} \int_{y=0}^{y=x} 3-x-y d y d x
$$

Or

fix y

$$
y=\operatorname{coser}_{T} x_{n}(y)
$$

$$
\int_{y=1}^{y=1} \int_{x=0}^{x=1} 3-x-y d x d y
$$

Som times fixing one variable leads to two Limits for the other Variable. So you might do two double integrds or try fixing the other Var
Ex 4 Page 847

EXAMPLE 4 Find the volwne of the wedgelike solid that lies beneath the surface $z=$ $16-x 2-y 2$ and above the region R bounded by the curve $Y=2 \mathrm{Vx}$, the line $Y=4 x-2$, and the x -axis.

Note fixing x gives two Lints of $y \Rightarrow$ two double integrals

Fixing y will gin one Limit of x

$$
\begin{aligned}
& 2 \sqrt{x}=4 x-2 \Rightarrow \sqrt{x}=2 x-1 \\
& \Rightarrow x=4 x^{2}-4 x+1 \quad x \geqslant 0 \\
& \Rightarrow 4 x-5 x+1=0 \\
& \Rightarrow x=\frac{-b \pm \sqrt{d i s e}}{2 a}=\frac{5 \pm \sqrt{9}}{8}=100 / / 8 \\
& y=2 \sqrt{1}=2
\end{aligned}
$$

Sometimes integrating in one order is hard or impasible So we swish order of integration
Ex 2
EXAMPLE 2 Calculate $\iint_{R} \frac{\sin (x)}{x} d A$
where R is the triangle in the xy-plane bounded by the x-axis, the line $y=x$, and the line
Solving in th order $d x d y$ Notelemmetery (series)
so try $d y d x$ (fix x)

$$
\int_{x_{i n}=0}^{x=1} \int_{y=0}^{y=x} \frac{\sin (x)}{x} d y d x
$$

easy

Ex Solve $\int_{0}^{1} \int_{0}^{\sqrt{x}} \frac{e^{y}}{y} d y d x \quad \begin{aligned} & x \text { is fixed between } 0 \& 1\end{aligned}$

End with this example
Find the volume under $z=1-x^{2}-y^{2}$ and above the $z=0$ plane (xy-plane) in the first octant

$$
=\int_{x=0}^{x=1} y-x^{2} y-\left.\frac{y^{3}}{3}\right|_{0} ^{\sqrt{1-x^{2}}} d x=\underbrace{\int_{x=0}^{x=1} \sqrt{1-x^{2}}-x^{2} \sqrt{1-x^{2}}-\frac{\left(\sqrt{1-x^{2}}\right)^{3}}{3}-(0-0-0) d x}_{\text {requires trig s nb }}
$$

easier with polar coordinates Section 15.4

15. 3 Area by Double Integral

One of the applications of dabble integrals is to find volume as we saw. Other applications are in section 15.6 (physics).
In 15.3 we will use donble Integral to find area of regions in planes and Average Values
real

If $f(x, y)=1$ then $V=\iint_{R} 1 d A=$ are of R
Ex, and Ex
Average Value: in single Var functions Alvine Value $=\frac{\int_{\frac{a}{b}}^{b} f(x) d x}{b-a}$
In two Var functions Average V blue $=\frac{\iint_{R} f(x, y) d A}{a r a a d R}$ at one instance the water Surface function is $f(x, y)$. if the water settle down its hight is the average.
Ex 3

15. 4 Double Integrals in Polar Form

Sometimes if we we the polar coordinates the integrals becomes easier.

Ex find the volume in the first octant under

$$
z=1-x^{2}-y^{2}
$$

$$
\begin{aligned}
& =\int_{0}^{1} y-x^{2} y-\left.\frac{y^{3}}{3}\right|_{y=0} ^{y-\sqrt{1-x^{2}}} d x=\int_{0}^{1} \sqrt{1-x^{2}}-x^{2} \sqrt{1-x^{2}}-\frac{\left(\sqrt{1-x^{2}}\right)^{3}}{3} d x \\
& =\int_{0}^{1} \sqrt{1-x^{2}}\left(1-x^{2}\right)-\frac{\left(\sqrt{1-x^{2}}\right)^{3}}{3} d x=\int \frac{2}{3}\left(1-x^{2}\right)^{3} d x
\end{aligned}
$$

Need Trig sub. This indicates polar usually easier.

$$
\begin{aligned}
& \frac{1 / 1 \times}{\sqrt{1-x^{2}}} \sin \theta=\frac{x}{1} \Rightarrow \frac{2}{5} \int\left(\cos ^{2} \theta\right)^{3 / 2} \cos \theta d \theta=\frac{2}{5} \int \cos ^{4} \theta d \theta \\
& =\frac{2}{2} \int\left(\frac{1+\cos 2 \theta}{2}\right)^{2}=\frac{2}{12} \int 1+2 \cos 2 \theta+\cos ^{2} 2 \theta d \theta \\
& =\frac{2}{12} \int 1+2 \cos 2 \theta+\frac{1+\cos 4 \theta}{2} d \theta=\frac{2}{12}\left[\theta+2 \sin (2 \theta) \frac{1}{2}+\frac{1}{2}\left(\theta-\sin 4 \theta \frac{1}{4}\right)\right] \\
& Q=\sin ^{-1}(x) \Rightarrow x=0 \Rightarrow \theta=0, x=1 \Rightarrow Q=\frac{\pi}{2} \Rightarrow S^{12}=\frac{2}{12}\left[\pi+0+\frac{1}{2}((\pi / 2)]-0=\pi / 8\right.
\end{aligned}
$$

Or use Polar
instead of dividing (gartitioning) the region by vertion and horizontal lines (rectangle), divide it by circles and rays (polar rectangles)

$$
\begin{aligned}
\Delta A_{K} & =\operatorname{area} \text { of big sector }-\operatorname{arpa} \theta \text { small (sector } \\
& =\frac{\Delta Q_{K}\left(r_{k}+\frac{1}{2} \Delta r_{K}\right)^{2}}{\mathbb{r r}^{2}}-\frac{\Delta Q_{K}\left(r_{k}-\frac{1}{2} \Delta r_{K}\right)^{2}}{2}
\end{aligned}
$$

$$
2 \pi \rightarrow \pi r^{2} \operatorname{aren}
$$

$$
\begin{aligned}
\text { 21 area } & =\frac{\Delta \pi r^{2}}{3 *} \\
& =\frac{1}{2} \Delta Q_{K}\left[X_{K}^{4}+r_{K} \Delta r_{K}+\frac{1}{4} \Delta r_{K_{1}}^{2}-\left(X_{K}^{2}-r_{K} \Delta r_{K}+\frac{1}{4} \Delta r_{K}^{2}\right)\right]
\end{aligned}
$$

$$
\Delta A_{k}=\gamma_{k} \Delta \gamma_{k} \Delta Q_{k} \Rightarrow V \approx \sum_{k=1}^{n} f \underbrace{f\left(\gamma_{k}, \theta_{k}\right) \gamma_{k} \Delta \gamma_{k} \Delta \theta_{k}}_{\text {hist }}
$$

$V=\iint_{R} f(r, \theta) \underbrace{r d r d \theta}_{d A}$ as $\|p\| \rightarrow 0$

Procedure for finding Limits is the same fix θ
Ex previous $\int_{0}^{1} \int_{0}^{\sqrt{1-x^{2}}} 1-x^{2}-y^{2} d y d x$

$$
=\int_{Q=0}^{\theta=\frac{\pi}{2}} \int_{r=0}^{r=1}\left(1-x^{2}-y^{2}\right) \gamma d r d Q
$$

$$
=\int_{Q=0}^{Q=\pi} \frac{\pi}{2} \frac{1}{2}-\frac{1}{4}-(0) d \theta=\left.\frac{1}{4} Q\right|_{0} ^{\frac{\pi}{2}}=\frac{\pi}{8}
$$

$E \times 1$ page 855
Area in polar coordinate $\iint_{\Omega} 1 r d r d Q \quad E x \alpha^{\infty}{ }_{R}^{\infty} \delta_{S} \delta_{S}$ Then Ex3\&EX 5 page 856

Ex 3
ExAMPLE 3 Exatauate $\iint_{R} e^{x^{2}+y^{2}} d y d x$

$$
\begin{gathered}
\Rightarrow y^{2}=1-x^{2} \Rightarrow x^{2}+y^{2}=1 \Rightarrow r^{2}= \\
\int_{Q=0}^{a=0} \int_{r=0}^{r=1} e^{r^{2}} r d r d a
\end{gathered}
$$

$$
\begin{aligned}
& u=r^{2} \\
& \begin{array}{l}
d u=2 r d r \\
d r=\frac{d u}{2 r}
\end{array} \Rightarrow \int_{Q=\pi}^{Q=\pi} \int_{r=0}^{r=1} e^{u} x \frac{d u}{2 r} d Q \\
& =\left.\int_{Q=0}^{Q=\pi} \frac{1}{2} e^{r^{2}}\right|_{r=0} ^{r=1} d \theta=\int_{0=0}^{Q=\pi} \frac{1}{2}(e-1) d \theta \\
& =\frac{1}{2}\left[2 Q-\left.a\right|_{0} ^{\pi}\right]=\frac{1}{2}[e r-\pi]=\frac{\pi(e-1)}{2}
\end{aligned}
$$

EXAMPLE 5 Find the volume of the solid region bounded above by the paraboloid

$$
\begin{aligned}
& =\int_{Q=0}^{2 \pi} \frac{9 r^{2}}{2}-\left.\frac{r^{4}}{4}\right|_{r=0} ^{r=1} d Q \\
& =\int_{Q=0}^{2 \pi} \frac{9}{2}-\frac{1}{4} d e=\left.\frac{17}{4} Q\right|_{0} ^{2 \pi} \\
& =\frac{17 \pi}{2}
\end{aligned}
$$

15.5 Triple Integrals in Rectangular Coordinates

In single var we used single integral to find the volume of solids of regular cross sections such as solids of revolution. In double var we used double integral to find volumes of more general solids.
Trible integrds will allow us to find the volumes of more general shaped solids (an dothan applications)
If $W=f(x, y, z)\left(\right.$ Cant graph $\left.^{\prime}\right)$ then its domain Consists of a set in space D

Partion the set D (solid) into small cuber then

$$
\iint_{D} f(x, y, z) d V=\operatorname{Lim}_{\| \rightarrow 0} \sum f(x, y, z) \Delta V
$$

This triple integral represents several quantities, such as density, defending on what $w=F(x, y, z)$ represents

But if $f(x, y, z)=1$ then the triple integrals are the volume of the solid represented by the set D

Def: The Volume of the closed bounded region D in space is $V=\iiint_{D} 1 d V \quad d V=\frac{d z}{\frac{d y d x}{d A} \text { or any }} \begin{gathered}\text { order }\end{gathered}$
finding Limits of integrations Steps page 861-862
for the order $d z \frac{d y d x}{d A}$ fix $x \& y$
this gives a line parable to z so limits
of z are $z=f(x, y)$.
Then for $d A=\left\{\begin{array}{l}d y d x \\ d x d y\end{array}\right.$ as we learned earlier
EXAMPLE 1 Find the volume of the region D enclosed by the surfaces $z=x 2+3 y 2$ and $\mathrm{z}=8-x 2-y 2$.

Shodar R is $x^{2}+3 y^{2}=8-x^{2}-y^{2} \Rightarrow 2 x^{2}+4 y^{2}=8^{4}$ elligere
Ex 3 and Ex 2 , finally Ex 4 for Average Value

EXAMPLE 2 Set up the limits of integration for evaluating the triple integral of a function $F(x, y, z)$ over the tetrahedron D with vertices $(0,0,0),(1,1,0),(0,1,0)$, and

EXAM PLE 3 Integrate $F(x, y, z)=1$ over the tetrahedron D in Example 2 in the order for order $d z d y \sqrt{x}$

Volume of tetrahedron is $\int_{0}^{1} \int_{x}^{1} \int_{0}^{y-x} 1 d z d y d x$

$$
\begin{aligned}
& =\left.\int_{0}^{1} \int_{x}^{1} z\right|_{0} ^{y-x} d y d x=\int_{0}^{1} \int_{x}^{1} y-x d y d x \\
& =\int_{0}^{1} \frac{y^{2}}{2}-\left.x y\right|_{0} ^{1} x d x=\int_{0}^{1} \frac{1}{2}-x-\left(\frac{x^{2}}{2}-x^{2}\right) d x \\
& =\int_{0}^{1} \frac{1}{2}-x+\frac{1}{2} x^{2} d x=\frac{1}{2} x-\frac{x^{2}}{2}+\left.\frac{\mid}{2} x^{3} \frac{1}{3}\right|_{0} ^{1}=\frac{1}{6} \text { unit }
\end{aligned}
$$

for order $d y d z d x$
fix z and $x \Rightarrow$ Line parallel to y-axis

for line $\left(\begin{array}{c}x \\ 0\end{array}, 1\right) \quad\left(1, z^{x}\right) \quad$ slog $\frac{-1}{1-0}=-1 \Rightarrow z=-1 x+b, 0=-1(1)+b$
$\therefore \operatorname{Lin} z=-x+1$

$$
\int_{x_{k=0}}^{x_{n=0}=1} \int_{z_{n=0}}^{z_{m=0}=-x+1} f(x, y, z) d y d z d x \quad \iiint 1 d y d z d x=1 / 6
$$

Average value of a function in space
Ane rage value of $F(x, y, z)$ or $D=\frac{\iiint_{D} f(x, y, z) d V}{V_{0} \operatorname{lum} e d t D}$
$E x 48$ gay 865
EXAMPLE 4 Find the average value of $F(x, y, z)=x y z$ throughout the cubical region
D bounded by the coordinate planes and the planes $x=2, Y=2$, and $\mathrm{z}=2$ in the

$$
\begin{aligned}
& V=2(z)(2)=8 \text { (cube solid) } \\
& \int_{x=0}^{x=2} \int_{y=0}^{y=0} \int_{z=0}^{z=2} x y z d z d y d x=8
\end{aligned}
$$

\therefore Average vatu is $\frac{8}{8}=1$
Do Exercise $4 d z d x d y$, $d y d x d z$ utilizing Polar to solve the Triple integrals. easier than trig sub.
15.7 Triple Integrals in Cylindrical and spherical coordinates
Sometimes it is easier to work with problems in these coordinates rather than rectangular. Specially when calculations involve cylinders, cones, or sphers.

Cylindrical coordinates
Def: In cylindrical coordinates, a point p in space is represented by ordered triples (γ, Q, Z)
Wheres and θ are the polar coordinates of the verticd projection of p on the $x y$-plant, and z He rectangular vertical coordinate

Rectangular and cylindrical relations

$$
(x, y, z) \quad(r, a, z)
$$

$x=r \cos a \quad r^{2}=x^{2}+y^{2} \quad$ Note: Z is the Same, $y=r \sin \theta \quad \tan \theta=\frac{y}{x}$ and γ and Q are what they ware infolar

Cylindrical coordinates are good for describing cylindens whose $a x$ is is the Z-axis and planes containing the Z-axis.
$E x r=4$ in cylindrical
in polar (21))
it was a circle canted at the orison with Valium

Ex $Q=\frac{\pi}{3}$ in cylindricd
 in polar (2D) it was a line through the origin

Ex $Z=2$ in cylindrical itheplane perpendicular to the z-axis at $z=2$

Same in rectangular

$$
\begin{aligned}
& \iiint_{D} F d V=\lim _{\|p\| \rightarrow 0} \sum_{k=1}^{n} f\left(\gamma_{k}, Q_{k}, z_{k}\right) D z_{k} \gamma_{k} \Delta \gamma_{k} \Delta Q_{k} \\
& \text { | Notary, isth - base } \\
& \Delta V=\Delta z \Delta A \\
& =\Delta z r \Delta r \Delta Q \\
& \Delta A=\gamma \Delta \gamma \Delta \theta
\end{aligned}
$$

$$
\iint_{D} \int_{D} f d z r d r \Delta \Delta \theta
$$

$d z d r d o$ is the easiest order for the volum element dy
Ex 1 Pase 876
EXAMPLE 1 Find the limits of integration in cylindrical coordinates for
integratifig \&
function $I(r,(), z)$ over the region D bounded below by the plane $z=0$, laterally by

So D is th set bound el bellow by $x y$-plane $(z=0)$, Laterally by theylinter $x^{2}+(y-1)^{\prime}=1$, and above by the Paraboloid $z=x^{2}+y^{2}$

$$
\iiint_{D} f(r, Q, z) d r=\iiint_{D} f(r, Q, z) r d z d r d Q
$$

So fix Q and r gins a lime parallel to z-axis Where it enters the set D is $Z_{m, m}=z(r, Q)$. Where it exit the set P is $Z_{m a n}-z(r, Q)$

$$
\Rightarrow \int_{z=0}^{z=x^{2}+y^{2}} F(r, x, z) d z=\int_{z=0}^{z=r^{2}} F d z
$$

for $d r d \theta$
$\frac{\text { QQ }}{r}$
Fix $Q, \quad r_{m_{\text {min }}}=f(Q)=0 \quad \gamma_{m_{a}}=f(Q)=\gamma$ from $x^{2}+(-1)^{2}=1$

$$
\begin{aligned}
& r^{2} \cos ^{2} \theta+(r \sin \theta-1)^{2}=1 \\
& r^{2} \cos ^{2} \theta+r^{2} \sin ^{2} \theta-2(\sin \theta+1=x \\
& r^{2}=\pi=2 r \sin \theta \Rightarrow r=2 \sin \theta \\
& \therefore \Rightarrow \int_{\theta=0} \int_{r=0}^{r=2 \sin \theta} \int_{z=0}^{z=r^{2}} f(r, \theta, z) r d z d r d \theta
\end{aligned}
$$

Exercise 11 page 883
11. Let D be the region bounded below by the plane $z=0$, above by the sphere $x^{\prime} f^{\prime} y^{\prime}+^{2} z^{\prime} \neq 24$, ard on the sides by the cylinder $x^{\prime}+y^{\prime}=1$. Set up the triple integrals in cylindrical coordinates that give the volume of D using the following orders of integration. a. $d z d r d$ b. $d r d z d \sqrt{ }$ c. $d \mathbb{d} d z d r$

a) $\iiint 1 r d z d r d \theta$

1) Fix r and $Q \Rightarrow$ a line parallel to Z. find $Z_{m}(, x)$ and $Z_{m a x}(x, A)$

$$
\begin{aligned}
x^{2}+y^{2}+z^{2} & =4 \\
z^{2} & =4-r^{2}
\end{aligned}
$$

2) for Limits at r and θ, use the projection of D ont $x y$-plane

$$
\therefore \int_{Q=0}^{Q=2 \pi} \int_{r=0}^{r=1} \int_{z=0}^{z=\sqrt{4-r^{2}}} 1 \gamma d z d \gamma d \theta=\frac{16}{3} \sqrt{\pi}-2 \sqrt{3} \pi
$$

b) $\iiint r d r d z d \theta$

1) Fix $z \& \theta \Rightarrow a$ line f through z-axis parallel to $x y$-plane
plane forpenixan plane containing
to $z a x_{i j} \quad z$-axis
Note Limits of r are different Find $\gamma_{m i n}(a z)$ and $\gamma_{m a z}(\alpha, z)$ for two parts of

$$
\iint_{r=0}^{r=1} \int_{r} r d r d z d Q+\iiint_{r=0}^{r=\sqrt{4-z^{2}}} r d r d z d Q
$$

2) for dada first part $z_{m i n}(Q)=0 \quad Z_{m a}(0)=\sqrt{3}$

$Q_{\text {in }}=0 Q_{\text {max }}=2 \mathbb{C}$ in both parts

$$
\begin{aligned}
& \therefore \int_{\alpha=0}^{\alpha=2 \pi} \int_{z=0}^{z=\sqrt{3}} \int_{r=0}^{r=1} r d r d z d \alpha+\int_{\alpha=0}^{\alpha-\pi} \int_{z=\sqrt{3}}^{z=2} \int_{r=0}^{r=\sqrt{4 z^{2}}} r d r \sqrt{z} d \\
& =\sqrt{3 \pi}+\left(\frac{16}{3}-3 \sqrt{3}\right) \pi=\frac{16}{3} \pi-2 \sqrt{3} \pi
\end{aligned}
$$

c) $\iiint x d \theta d z d r$

1) fix z and r

$$
\Rightarrow Q_{m_{i}}(r, z)=0 \quad Q_{m_{k}}(r, z)=2 \pi
$$

2) $f_{i x r} \quad z_{m, n}=0 \quad z_{m a x}=\sqrt{4-r^{2}}$

$$
\therefore \int_{r=0}^{r=1} \int_{z=0}^{r_{m_{n}=-}=r_{m=}=1} \int_{Q=0}^{\alpha=2 \pi} r d a d z d z=\frac{16}{2} \pi-2 \sqrt{3} \pi
$$

15.8 Substitution in Multiple Intros.

Substitution is used to simplify the integrand, the limits, or both.
If $f(x, y)$, defint on R, is the Image of another region G in the $W V$-plane by the one-to-one fransformia for interior points, $x=g(u, v)$ and $y=h(u, v)$
Then $\quad \iint_{R} f(x, y) d A=\iint_{G} f(g(u, v), h((x, v))|J(u, v)| d v$ when $J(u, v)=\frac{\partial(x, y)}{\partial(u, y)}=\left|\begin{array}{ll}\frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v}\end{array}\right|$ is a measure of how much the transformation is expanding or contracting the area a rand a point in G as G is trans formed into R
Note: this Implied $\iint_{R} d y d x\left(\operatorname{ar} r_{\text {a }}\right.$ of $\left.R\right)=\iiint_{G} T J d u d v$

Ex 1 write the integral $\iint_{R} f(x, y) d x d y$ When R is $R R^{x^{2}+y^{2}+1}$
Using the transtormation $x=r \cos \theta$ Note Polar $y=r \sin \theta$ transformation $x=1$ without transformation since transformation is polar, we shonkl get $\int_{x=0}^{x=} \int_{y=0}^{y=-\sqrt{1-x^{2}}} f(x, y) d y d x$ $\int_{\theta=0}^{a=2 \pi} \int_{r=0}^{r=1} f(r \cos \theta, r \sin \theta) \frac{r d r}{J(r, \theta)} d a$

$$
\begin{aligned}
& T=\left|\begin{array}{ll}
\frac{\partial x}{\partial r} & \frac{\partial x}{\partial \theta} \\
\frac{\partial y}{\partial r} & \frac{\partial y}{\partial \theta}
\end{array}\right|=\left|\begin{array}{cc}
\cos \theta & -r \sin \theta \\
\sin \theta & r \cos \theta
\end{array}\right|=r \cos ^{2} \theta-r \sin ^{2} \theta= \\
& \therefore \iint_{Q} f(x, y) d y d x=\iint_{G} f(r \cos \theta, r \sin \theta)|r| d r d \theta
\end{aligned}
$$

For the region G

Ex 2 P5 $8888 \quad E_{x} 3$ pmin $889 E_{x} 4$ pres 890

Substitation in trige interalt
same a donble intercal
Note cylinaticd and sefherical imerath in 15.7 are sperid substintion in tipe intyods

$$
E \times S
$$

